Abstract
Purpose
To investigate the role of SCO2 in extreme myopia of Japanese patients.
Methods
In total, 101 Japanese patients with extreme myopia (axial length of ≥30 mm) OU at the Kyoto University Hospital were included in this study. Exon 2 of SCO2 was sequenced by conventional Sanger sequencing. The detected variants were assessed using in silico prediction programs: SIFT, PolyPhen-2 and MutationTaster. To determine the frequency of the mutations in normal subjects, we referred to the 1000 Genomes Project data and the Human Genetic Variation Database (HGVD) in the Human Genetic Variation Browser.
Results
The average age of the participants was 62.9 ± 12.7 years. There were 31 males (30.7 %) and 70 females. Axial lengths were 31.76 ± 1.17 mm OD and 31.40 ± 1.07 mm OS, and 176 eyes (87.6 %) out of 201 eyes had myopic maculopathy of grade 2 or more. Among the 101 extremely myopic patients, one mutation (c.290 C > T;p.Ala97Val) in SCO2 was detected. This mutation was not found in the 1000 Genomes Project data or HGVD data. Variant type of the mutation was nonsynonymous. Although the SIFT prediction score was 0.350, the PolyPhen-2 probability was 0.846, thus predicting its pathogenicity to be possibly damaging. MutationTaster PhyloP was 1.268, suggesting that the mutation is conserved.
Conclusions
We identified one novel possibility of an extreme myopia-causing mutation in SCO2. No other disease-causing mutation was found in 101 extremely myopic Japanese patients, suggesting that SCO2 plays a limited role in Japanese extreme myopia. Further investigation is required for better understanding of extreme myopia.



References
Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32:3–16.
Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25:381–91.
Roberts CB, Hiratsuka Y, Yamada M, Pezzullo ML, Yates K, Takano S, et al. Economic cost of visual impairment in Japan. Arch Ophthalmol. 2010;128:766–71.
Mutti DO, Cooper ME, O’Brien S, Jones LA, Marazita ML, Murray JC, et al. Candidate gene and locus analysis of myopia. Mol Vis. 2007;13:1012–9.
Nakanishi H, Hayashi H, Yamada R, Yamashiro K, Nakata I, Shimada N, et al. Single-nucleotide polymorphisms in the promoter region of matrix metalloproteinase-1, -2, and -3 in Japanese with high myopia. Invest Ophthalmol Vis Sci. 2010;51:4432–6.
Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Association of paired box 6 with high myopia in Japanese. Mol Vis. 2012;18:2726–35.
Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, et al. Insulin-like growth factor 1 is not associated with high myopia in a large Japanese cohort. Mol Vis. 2013;19:1074–81.
Oishi M, Yamashiro K, Miyake M, Akagi-Kurashige Y, Kumagai K, Nakata I, et al. Association between ZIC2, RASGRF1, and SHISA6 genes and high myopia in Japanese subjects. Invest Ophthalmol Vis Sci. 2013;54:7492–7.
Yoshikawa M, Yamashiro K, Miyake M, Oishi M, Akagi-Kurashige Y, Kumagai K, et al. Comprehensive replication of the relationship between myopia-related genes and refractive errors in a large Japanese cohort. Invest Ophthalmol Vis Sci. 2014;55:7343–54.
Nakanishi H, Yamada R, Gotoh N, Hayashi H, Yamashiro K, Shimada N, et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 2009;5:e1000660.
Li YJ, Goh L, Khor CC, Fan Q, Yu M, Han S, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology. 2011;118:368–75.
Shi Y, Qu J, Zhang D, Zhao P, Zhang Q, Tam PO, et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am J Hum Genet. 2011;88:805–13.
Li Z, Qu J, Xu X, Zhou X, Zou H, Wang N, et al. A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. Hum Mol Genet. 2011;20:2861–8.
Meng W, Butterworth J, Bradley DT, Hughes AE, Soler V, Calvas P, et al. A genome-wide association study provides evidence for association of chromosome 8p23 (MYP10) and 10q21.1 (MYP15) with high myopia in the French Population. Invest Ophthalmol Vis Sci. 2012;53:7983–8.
Shi Y, Gong B, Chen L, Zuo X, Liu X, Tam PO, et al. A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. Hum Mol Genet. 2013;22:2325–33.
Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F, et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet. 2013;22:5288–94.
Shi Y, Li Y, Zhang D, Zhang H, Li Y, Lu F, et al. Exome sequencing identifies ZNF644 mutations in high myopia. PLoS Genet. 2011;7:e1002084.
Tran-Viet KN, St Germain E, Soler V, Powell C, Lim SH, Klemm T, et al. Study of a US cohort supports the role of ZNF644 and high-grade myopia susceptibility. Mol Vis. 2012;18:937–44.
Xiang X, Wang T, Tong P, Li Y, Guo H, Wan A, et al. New ZNF644 mutations identified in patients with high myopia. Mol Vis. 2014;20:939–46.
Jiang D, Li J, Xiao X, Li S, Jia X, Sun W, et al. Detection of mutations in LRPAP1, CTSH, LEPREL1, ZNF644, SLC39A5, and SCO2 in 298 families with early-onset high myopia by exome sequencing. Invest Ophthalmol Vis Sci. 2015;56:339–45.
Tran-Viet KN, Powell C, Barathi VA, Klemm T, Maurer-Stroh S, Limviphuvadh V, et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia. Am J Hum Genet. 2013;92:820–6.
Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, et al. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum Genet. 2013;132:913–21.
Richards AJ, Yates JR, Williams R, Payne SJ, Pope FM, Scott JD, et al. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet. 1996;5:1339–43.
Snead MP, Yates JR. Clinical and Molecular genetics of Stickler syndrome. J Med Genet. 1999;36:353–9.
Martin S, Richards AJ, Yates JR, Scott JD, Pope M, Snead MP. Stickler syndrome: further mutations in COL11A1 and evidence for additional locus heterogeneity. Eur J Hum Genet. 1999;7:807–14.
Yoshida S, Yamaji Y, Kuwahara R, Yoshida A, Hisatomi T, Ueno A, et al. Novel mutation in exon 2 of COL2A1 gene in Japanese family with Stickler Syndrome type I. Eye (Lond). 2006;20:743–5.
Hoornaert KP, Vereecke I, Dewinter C, Rosenberg T, Beemer FA, Leroy JG, et al. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients. Eur J Hum Genet. 2010;18:872–80.
Acke FR, Malfait F, Vanakker OM, Steyaert W, De Leeneer K, Mortier G, et al. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Mol Genet Metab. 2014;113:230–5.
Alzahrani F. Al Hazzaa SA, Tayeb H, Alkuraya FS. LOXL3, encoding lysyl oxidase-like 3, is mutated in a family with autosomal recessive Stickler syndrome. Hum Genet. 2015;134:451–3.
Biggin A, Holman K, Brett M, Bennetts B, Adès L. Detection of thirty novel FBN1 mutations in patients with Marfan syndrome or a related fibrillinopathy. Hum Mutat. 2004;23:99.
Micheal S, Khan MI, Akhtar F, Weiss MM, Islam F, Ali M, et al. Identification of a novel FBN1 gene mutation in a large Pakistani family with Marfan syndrome. Mol Vis. 2012;18:1918–26.
Bourens M, Boulet A, Leary SC, Barrientos A. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Hum Mol Genet. 2014;23:2901–13.
Ohno-Matsui K, Kawasaki R, Jonas JB, Gemmy Cheung CM, Saw SM, Verhoeven VJ, et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015;159:877–83.e7.
Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet. 1999;23:333–7.
Acknowledgments
This study was supported in part by a Grant-in-aid for Scientific Research (no. 24592624) from the Japan Society for the Promotion of Science, Tokyo, Japan.
Conflicts of interest
T Wakazono, None; M. Miyake, None; K. Yamashiro, None; M. Yoshikawa, None; N. Yoshimura, Grants (Canon, Topcon), Consultant fees (Canon, Nidek), Lecture fees (Canon, Nidek).
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Wakazono, T., Miyake, M., Yamashiro, K. et al. Association between SCO2 mutation and extreme myopia in Japanese patients. Jpn J Ophthalmol 60, 319–325 (2016). https://doi.org/10.1007/s10384-016-0442-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10384-016-0442-4