Skip to main content

Advertisement

Log in

Novel mutations in the gene for α-subunit of retinal cone cyclic nucleotide-gated channels in a Japanese patient with congenital achromatopsia

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To present the characteristics and pathology of a patient with congenital achromatopsia.

Patient and methods

The patient was a 22-year-old Japanese woman who was 8 years old when she first visited our clinic. Comprehensive ophthalmic examinations including visual acuity measurements, perimetry, optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, electroretinography (ERG), and color vision tests were performed. Her genomic DNA was used as the template for the amplification of exons of five candidate genes for achromatopsia; CNGA3, CNGB3, GNAT2, PDE6C, and PDE6H, and the amplified products were sequenced. A missense mutation, found in the CNGA3, was studied both electrophysiologically and biochemically.

Results

Her phenotype was typical of congenital complete achromatopsia. She was followed for 14 years, and her vision and fundus findings were stable. However, the scotopic ERG b-waves at age 22 were smaller than those at age 8, and her FAF images showed increased autofluorescence in both maculae. Genetic examinations revealed combined heterozygous mutations of c.997_998delGA and p.M424V in the CNGA3 gene. The homomeric channel consisting of the CNGA3 subunit with the p.M424V mutation had a weak cGMP-activated current in patch-clamp recordings. In heterologous expression analyses, the expression at the cell surface of the mutant CNGA3 subunit was about 28 % of the wild type.

Conclusions

The two novel mutations found in the CNGA3 gene, c.997_998delGA and p.M424V, can cause complete achromatopsia. The vision of the patient was stationary until the third decade of life although the FAF was altered at the age of 22 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alpern M, Falls HF, Lee GB. The enigma of typical total monochromacy. Am J Ophthalmol. 1960;50:996–1012.

    Article  CAS  PubMed  Google Scholar 

  2. Harrison R, Hoefnagel D, Hayward JN. Congenital total color blindness. A clinicopathological report. Arch Ophthalmol. 1960;64:685–92.

    Article  CAS  PubMed  Google Scholar 

  3. Andréasson S, Tornqvist K. Electroretinograms in patients with achromatopsia. Acta Ophthalmol (Copenh). 1991;69:711–6.

    Article  Google Scholar 

  4. Nishiguchi KM, Sandberg MA, Gorji N, Berson EL, Dryja TP. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat. 2005;25:248–58.

    Article  CAS  PubMed  Google Scholar 

  5. Khan NW, Wissinger B, Kohl S, Sieving PA. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophthalmol Vis Sci. 2007;48:3864–71.

    Article  PubMed  Google Scholar 

  6. Katagiri S, Hayashi T, Yoshitake K, Sergeev Y, Akahori M, Furuno M, et al. Congenital achromatopsia and macular atrophy caused by a novel recessive PDE6C mutation (p.E591K). Ophthalmic Genet. 2015;36:137–44.

    Article  CAS  PubMed  Google Scholar 

  7. Kohl S, Hamel C. Clinical utility gene card for: achromatopsia—update 2013. Eur J Hum Genet. 2013;. doi:10.1038/ejhg.2013.44.

    Google Scholar 

  8. Kohl S, Marx T, Giddings I, Jägle H, Jacobson SG, Apfelstedt-Sylla E, et al. Total colourblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet. 1998;19:257–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wissinger B, Gamer D, Jägle H, Giorda R, Marx T, Mayer S, et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet. 2001;69:722–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson S, Michaelides M, Aligianis IA, Ainsworth JR, Mollon JD, Maher ER, et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet. 2004;41:e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goto-Omoto S, Hayashi T, Gekka T, Kubo A, Takeuchi T, Kitahara K. Compound heterozygous CNGA3 mutations (R436W, L633P) in a Japanese patient with congenital achromatopsia. Vis Neurosci. 2006;23:395–402.

    Article  PubMed  Google Scholar 

  12. Reuter P, Koeppen K, Ladewig T, Kohl S, Baumann B, Achromatopsia Clinical Study Group, et al. Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia. Hum Mutat. 2008;29:1228–36.

    Article  Google Scholar 

  13. Koeppen K, Reuter P, Ladewig T, Kohl S, Baumann B, Jacobson SG, et al. Dissecting the pathogenic mechanisms of mutations in the pore region of the human cone photoreceptor cyclic nucleotide-gated channel. Hum Mutat. 2010;31:830–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thiadens AAHJ, Somervuo V, van den Born LI, Roosing S, van Schooneveld MJ, Kuijpers RWAM, et al. Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:5952–7.

    Article  PubMed  Google Scholar 

  15. Genead MA, Fishman GA, Rha J, Dubis AM, Bonci DMO, Dubra A, et al. Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci. 2011;52:7298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saqib MAN, Awan BM, Sarfraz M, Khan MN, Rashid S, Ansar M. Genetic analysis of four Pakistani families with achromatopsia and a novel S4 motif mutation of CNGA3. Jpn J Ophthalmol. 2011;55:676–80.

    Article  PubMed  Google Scholar 

  17. Thomas MG, McLean RJ, Kohl S, Sheth V, Gottlob I. Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. Br J Ophthalmol. 2012;96:1232–6.

    Article  PubMed  Google Scholar 

  18. Fahim AT, Khan NW, Zahid S, Schachar IH, Branham K, Kohl S, et al. Diagnostic fundus autofluorescence patterns in achromatopsia. Am J Ophthalmol. 2013;156:1211–9.

    Article  PubMed  Google Scholar 

  19. Sundaram V, Wilde C, Aboshiha J, Cowing J, Han C, Langlo CS, et al. Retinal structure and function in achromatopsia. Ophthalmology. 2014;121:234–45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Greenberg JP, Sherman J, Zweifel SA, Chen RWS, Duncker T, Kohl S, et al. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmol. 2014;132:437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li S, Huang L, Xiao X, Jia X, Guo X, Zhang Q. Identification of CNGA3 mutations in 46 families. Common cause of achromatopsia and cone-rod dystrophies in Chinese patients. JAMA Ophthalmol. 2014;132:1076–83.

    Article  PubMed  Google Scholar 

  22. Zelinger L, Cideciyan AV, Kohl S, Schwartz SB, Rosenmann A, Eli D, et al. Genetics and disease expression in the CNGA3 form of achromatopsia. Steps on the path to gene therapy. Ophthalmology. 2015;122:997–1007.

    Article  PubMed  Google Scholar 

  23. Liang X, Dong F, Li H, Li H, Yang L, Sui R. Novel CNGA3 mutations in Chinese patients with achromatopsia. Br J Ophthalmol. 2015;99:571–6.

    Article  PubMed  Google Scholar 

  24. Sundin OH, Yang JM, Li Y, Zhu D, Hurd JN, Mitchell TN, et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet. 2000;25:289–93.

    Article  CAS  PubMed  Google Scholar 

  25. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jägle H, et al. CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet. 2005;13:302–8.

    Article  CAS  PubMed  Google Scholar 

  26. Okada A, Ueyama H, Toyoda F, Oda S, Ding WG, Tanabe S, et al. Functional role of hCNGB3 in regulation of human cone CNG channel: effect of rod monochromacy-associated mutations in hCNGB3 on channel function. Invest Ophthalmol Vis Sci. 2004;45:2324–32.

    Article  PubMed  Google Scholar 

  27. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadalà M, et al. Mutations in the cone photoreceptor G-protein α-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet. 2002;71:422–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aligianis IA, Forshew T, Johnson S, Michaelides M, Johnson CA, Trembath RC, et al. Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the α subunit of cone transducin (GNAT2). J Med Genet. 2002;39:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thiadens AAHJ, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RWJ, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet. 2009;85:240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohl S, Coppieters F, Meire F, Schaich S, Roosing S, Brennenstuhl C, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. Am J Hum Genet. 2012;91:527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kohl S, Zobor D, Chiang WC, Weisschuh N, Staller J, Menendez IG, et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet. 2015;47:757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88:291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thiadens AAHJ, Roosing S, Collin RWJ, van Moll-Ramirez N, van Lith-Verhoeven JJC, van Schooneveld MJ, et al. Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology. 2010;117:825–30.

    Article  PubMed  Google Scholar 

  34. Vincent A, Wright T, Billingsley G, Westall C, Héon E. Oligocone trichromacy is part of the spectrum of CNGA3-related cone system disorders. Ophthalmic Genet. 2011;32:107–13.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Wang H, Cao M, Li Z, Chen X, Patenia C, et al. Whole-exome sequencing identifies ALMS1, IQCB1, CNGA3, and MYO7A mutations in patients with Leber congenital amaurosis. Hum Mutat. 2011;32:1450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130:1–12.

    Article  PubMed  Google Scholar 

  37. Oda S, Ueyama H, Nishida Y, Tanabe S, Yamade S. Analysis of L-cone/M-cone visual pigment gene arrays in females by long-range PCR. Vision Res. 2003;43:489–95.

    Article  CAS  PubMed  Google Scholar 

  38. Muraki-Oda S, Toyoda F, Okada A, Tanabe S, Yamade S, Ueyama H, et al. Functional analysis of rod monochromacy-associated missense mutations in the CNGA3 subunit of the cone photoreceptor cGMP-gated channel. Biochem Biophys Res Commun. 2007;362:88–93.

    Article  CAS  PubMed  Google Scholar 

  39. Haegerstrom-Portnoy G, Schneck ME, Verdon WA, Hewlett SE. Clinical vision characteristics of the congenital achromatopsias. II. Color vision. Optom Vis Sci. 1996;73:457–65.

    Article  CAS  PubMed  Google Scholar 

  40. dbSNP. In: National Center for Biotechnology Information, U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/snp. Accessed 23 Nov 2015.

  41. The human gene mutation database. Institute of Medical Genetics in Cardiff. http://www.hgmd.cf.ac.uk/ac/index.php. Accessed 23 Nov 2015.

  42. Nakasone N, Nakamura YS, Higaki K, Oumi N, Ohno K, Ninomiya H. Endoplasmic reticulum-associated degradation of Niemann-Pick C1. Evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin. J Biol Chem. 2014;289:19714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown KT. The electroretinogram: its components and their origins. Vision Res. 1968;8:633–77.

    Article  CAS  PubMed  Google Scholar 

  44. Newman EA, Odette LL. Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol. 1984;51:164–82.

    CAS  PubMed  Google Scholar 

  45. Qiu H, Fujiwara E, Liu M, Lam BL, Hamasaki DI. Evidence that a-wave latency of the electroretinogram is determined solely by photoreceptors. Jpn J Ophthalmol. 2002;46:426–32.

    Article  PubMed  Google Scholar 

  46. Haverkamp S, Michalakis S, Claes E, Seeliger MW, Humphries P, Biel M, et al. Synaptic plasticity in CNGA3 −/− mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci. 2006;26:5248–55.

    Article  CAS  PubMed  Google Scholar 

  47. Nishimura T, Machida S, Kondo M, Terasaki H, Yokoyama D, Kurosaka D. Enhancement of ON-bipolar cell responses of cone electroretinograms in rabbits with the Pro347Leu rhodopsin mutation. Invest Ophthalmol Vis Sci. 2011;52:7610–7.

    Article  CAS  PubMed  Google Scholar 

  48. Weleber RG. The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci. 1981;20:392–9.

    CAS  PubMed  Google Scholar 

  49. Sparrow JR, Yoon KD, Wu Y, Yamamoto K. Interpretations of fundus autofluorescence from studies of the bisretinoids of the retina. Invest Ophthalmol Vis Sci. 2010;51:4351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res. 2012;31:121–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuniyoshi K. Full-field ERG findings in retinal disorders. In: Kondo M editor. All about functional examination of the retina. The Series of Ophthalmology Handbook “Ganka Shinryo Qualify”. Tokyo: Nakayama Shoten Co. Ltd.; 2012. pp.143–55. (in Japanese).

  52. Sakuramoto H, Kuniyoshi K. Full-field ERG. Ganka. 2014;56:65–75 (in Japanese).

    Google Scholar 

Download references

Acknowledgments

We thank Ms. Yukiko Koyama in Central Research Laboratory, Shiga University of Medical Science for her technical assistance (sequencing). The authors thank Professor Duco I. Hamasaki of the Bascom Palmer Eye Institute of the University of Miami for critical discussion and final manuscript editing. This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (25462712, 25462711 and 26462654). This work was also supported by the Ministry of Health, Labour and Welfare, Japan (13803661 and 23164001), and by the Japan Agency for Medical Research and Development (Practical Research Project for Rare/Intractable Diseases, 15ek0109072h0002).

Conflicts of interest

K. Kuniyoshi, None; S. Muraki-Oda, None; H. Ueyama, None; F. Toyoda, None; H. Sakuramoto, None; H. Ogita, None; M. Irifune, None; S. Yamamoto, None; A. Nakao, None; K. Tsunoda, None; T. Iwata, None; M. Ohji, None; Y. Shimomura, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Kuniyoshi.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuniyoshi, K., Muraki-Oda, S., Ueyama, H. et al. Novel mutations in the gene for α-subunit of retinal cone cyclic nucleotide-gated channels in a Japanese patient with congenital achromatopsia. Jpn J Ophthalmol 60, 187–197 (2016). https://doi.org/10.1007/s10384-016-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0424-6

Keywords

Navigation