Japanese Journal of Ophthalmology

, Volume 58, Issue 2, pp 188–196 | Cite as

Paracentral scotoma in glaucoma detected by 10-2 but not by 24-2 perimetry

  • Masanori HangaiEmail author
  • Hanako Ohashi Ikeda
  • Tadamichi Akagi
  • Nagahisa Yoshimura
Clinical Investigation



To describe, in glaucomatous patients, spectral-domain optical coherence tomography (SD-OCT) results predictive of paracentral visual field (VF) defects present on standard automated perimetry (SAP) 10-2, but not on SAP 24-2.


The SAP 10-2 test was repeated 3 times to determine whether paracentral VF defects were present. Spectralis™ HRA + OCT was used to obtain speckle-noise-reduced macular B-scans. The macular scan protocol consisted of 19 vertical cross-sectional scan lines centered on the fovea (30° × 15° volume scan), each of which was the average of 50 scans. A 3D OCT-2000 was also used to determine macular layer thicknesses and to detect abnormally thin regions (below the 1 % confidence interval of the normative data).


We identified 3 cases in which paracentral VF defects were detected on SAP 10-2, but not on SAP 24-2. Paracentral VF defects were detected on all of the SAP 10-2 tests repeated 3 times, and included absolute scotoma in 2 of the 3 SAP 10-2 results. Retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) damage was diminished on SD-OCT macular images; 2 patients had RNFL and GCL thinning within and central to the parafoveal region, where the GCL is generally thickest in healthy eyes, and 1 patient had evident RNFL and GCL thinning in the papillomacular bundle.


Macular SD-OCT scans may be useful in deciding whether SAP 10-2 should be performed.


Glaucoma Paracentral scotoma Spectral-domain optical coherence tomography Visual field testing 



This research was supported in part by a Grant-in-Aid for Scientific Research (20592038) from the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.

Conflicts of interest

M. Hangai, Consultant (NIDEK, Topcon), Grants (Canon, Topcon), Lectures (Heidelberg Engineering, Santen); H. Ohashi Ikeda, None; T. Akagi, None; N. Yoshimura, Consultant (NIDEK), Grants (NIDEK, Topcon, Canon), Lectures (Topcon, Canon).

Supplementary material

10384_2013_298_MOESM1_ESM.tif (35 mb)
Supplementary material 1 (TIFF 35824 kb) Supplementary Fig. 1. Pattern deviation maps of 10-2 perimetry performed at 3 visits. A, B, C, Pattern deviation maps of 10-2 perimetry corresponding to K, L, M of the revised Fig. 2 (case 1). D, E, F, Pattern deviation maps of 10-2 perimetry corresponding to K, L, M of the revised Fig. 3 (case 2). G, H, I, Pattern deviation maps of 10-2 perimetry corresponding to M, N, O of the revised Fig. 4 (case 1)


  1. 1.
    Kolker AE. Visual prognosis in advanced glaucoma: a comparison of medical and surgical therapy for retention of vision in 101 eyes with advanced glaucoma. Trans Am Ophthalmol Soc. 1977;75:539–55.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Coeckelbergh TR, Brouwer WH, Cornelissen FW, Van Wolffelaar P, Kooijman AC. The effect of visual field defects on driving performance: a driving simulator study. Arch Ophthalmol. 2002;120:1509–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Stamper RL. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc. 1984;82:792–826.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Anctil JL, Anderson DR. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol. 1984;102:363–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Koseki N, Araie M, Yamagami J, Suzuki Y. Sectorization of central 10-deg visual field in open-angle glaucoma. An approach for its brief evaluation. Graefes Arch Clin Exp Ophthalmol. 1995;233:621–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiefer U, Papageorgiou E, Sample PA, Pascual JP, Selig B, Krapp E, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51:5685–9.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sihota R, Gupta V, Tuli D, Sharma A, Sony P, Srinivasan G. Classifying patterns of localized glaucomatous visual field defects on automated perimetry. J Glaucoma. 2007;16:146–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Kimura Y, Hangai M, Morooka S, Takayama K, Nakano N, Nukada M, et al. Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci. 2012;53:6472–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakano N, Hangai M, Nakanishi H, Mori S, Nukada M, Kotera Y, et al. Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography. Ophthalmology. 2011;118:2414–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci. 2011;52:8769–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Black AA, Wood JM, Lovie-Kitchin JE. Inferior visual field reductions are associated with poorer functional status among older adults with glaucoma. Ophthalmic Physiol Opt. 2011;31:283–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Araie M, Arai M, Koseki N, Suzuki Y. Influence of myopic refraction on visual field defects in normal tension and primary open angle glaucoma. Jpn J Ophthalmol. 1995;39:60–4.PubMedGoogle Scholar
  14. 14.
    Mayama C, Suzuki Y, Araie M, Ishida K, Akira T, Yamamoto T, et al. Myopia and advanced-stage open-angle glaucoma. Ophthalmology. 2002;109:2072–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Chihara E, Honda Y. Multiple defects in the retinal nerve fiber layer in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992;230:201–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Chihara E. Myopia and diabetes mellitus as modificatory factors of glaucomatous optic neuropathy. Jpn J Ophthalmol (in press).Google Scholar
  17. 17.
    Lee J, Hangai M, Kimura Y, Takayama K, Kee C, Yoshimura N. Measurement of macular ganglion cell layer and circumpapillary retinal nerve fiber layer to detect paracentral scotoma in early glaucoma. Graefes Arch Clin Exp Ophthalmol. 2013;251:2003–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Kimura Y, Hangai M, Matsumoto A, Akagi T, Ikeda HO, Ohkubo S, et al. Macular structure parameters as an automated indicator of paracentral scotoma in early glaucoma. Am J Ophthalmol. 2013;156:907–17Google Scholar
  19. 19.
    Omodaka K, Kunimatsu-Sanuki S, Morin R, Tsuda S, Yokoyama Y, Takahashi H, et al. Development of a new strategy of visual field testing for macular dysfunction in patients with open angle glaucoma. Jpn J Ophthalmol. 2013;57:457–62Google Scholar
  20. 20.
    Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:940–6.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2014

Authors and Affiliations

  • Masanori Hangai
    • 1
    • 2
    • 3
    Email author
  • Hanako Ohashi Ikeda
    • 1
  • Tadamichi Akagi
    • 1
  • Nagahisa Yoshimura
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan
  2. 2.Department of OphthalmologyKurume University School of MedicineKurumeJapan
  3. 3.Department of OphthalmologySaitama Medical UniversityIrumaJapan

Personalised recommendations