Japanese Journal of Ophthalmology

, Volume 57, Issue 6, pp 529–539 | Cite as

Comparison of ability of time-domain and spectral-domain optical coherence tomography to detect diffuse retinal nerve fiber layer atrophy

  • Ko Eun Kim
  • Seok Hwan KimEmail author
  • Jin Wook Jeoung
  • Ki Ho Park
  • Tae Woo Kim
  • Dong Myung Kim
Clinical Investigation



Our aim was to evaluate and compare diagnostic capabilities of time-domain (Stratus) and spectral-domain (Cirrus) optical coherence tomography (OCT) to detect diffuse retinal nerve fiber layer (RNFL) atrophy.


This study assessed 101 eyes from 101 glaucoma patients with diffuse RNFL atrophy and 101 eyes from 101 age-matched healthy individuals. Two experienced glaucoma specialists graded red-free RNFL photographs of eyes with diffuse RNFL atrophy using a four-level grading system. The area under the receiver operating characteristic curves (AUC) of normal eyes was compared with that of eyes with diffuse atrophy. Sensitivity and specificity of each OCT device were calculated on the basis of its internal normative database.


The largest AUC for Stratus and Cirrus were obtained for average RNFL thicknesses (0.96 and 0.94, respectively). Comparison of the AUC with different RNFL atrophy grades revealed no significant difference between the two OCT devices. Using an internal normative database at a <5 % level, the overall sensitivity of Stratus ranged from 58.0 to 84.0 %, whereas that of Cirrus ranged from 75.0 to 87.0 %. According to the normative database, the highest Stratus sensitivity was obtained with the temporal–superior–nasal–inferior–temporal (TSNIT) thickness graph, and the highest Cirrus sensitivity with the TSNIT thickness graph and the deviation map.


The AUC obtained from Cirrus were comparable with those from Stratus. On the basis of their normative databases, these devices had similar diagnostic accuracy. Our results suggest that the diagnostic capabilities of the two instruments to detect diffuse RNFL atrophy are similar.


Cirrus OCT Stratus OCT Diffuse retinal nerve fiber layer atrophy Glaucoma Diagnostic accuracy 



This study was supported by grant number 04-2012-1325 from the Seoul National University Hospital Research Fund.

Supplementary material

10384_2013_270_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)


  1. 1.
    Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol. 1982;100:807–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Quigley HA. Examination of the retinal nerve fiber layer in the recognition of early glaucoma damage. Trans Am Ophthalmol Soc. 1986;84:920–66.PubMedGoogle Scholar
  3. 3.
    Airaksinen PJ, Drance SM. Neuroretinal rim area and retinal nerve fiber layer in glaucoma. Arch Ophthalmol. 1985;103:203–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:4121–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006;142:576–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol. 2006;141:105–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J, et al. Detection of early glaucoma with optical coherence tomography (Stratus OCT). J Glaucoma. 2008;17:183–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Parikh RS, Parikh S, Sekhar GC, Kumar RS, Prabakaran S, Babu JG, et al. Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. Ophthalmology. 2007;114:2238–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am J Ophthalmol. 1991;111:485–90.PubMedGoogle Scholar
  10. 10.
    Hwang JM, Kim TW, Park KH, Kim DM, Kim H. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and red-free fundus photography. J Glaucoma. 2006;15:223–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim TW, Park UC, Park KH, Kim DM, et al. Ability of Stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. Invest Ophthalmol Vis Sci. 2007;48:1635–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Jeoung JW, Kim SH, Park KH, Kim TW, Kim DM, et al. Quantitative assessment of diffuse retinal nerve fiber layer atrophy using optical coherence tomography: diffuse atrophy imaging study. Ophthalmology. 2010;117:1946–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Jeoung JW, Kim SH, Park KH, Kim TW, Kim DM. Diagnostic accuracy of OCT with a normative database to detect diffuse retinal nerve fiber layer atrophy: diffuse atrophy imaging study. Invest Ophthalmol Vis Sci. 2011;52:6074–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Sung KR, Kim DY, Park SB, Kook MS. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology. 2009;116:1264–70 (70 e1).PubMedCrossRefGoogle Scholar
  15. 15.
    Kim NR, Lim H, Kim JH, Rho SS, Seong GJ, Kim CY, et al. Factors associated with false positives in retinal nerve fiber layer color codes from spectral-domain optical coherence tomography. Ophthalmology. 2011;118:1774–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Jeoung JW, Park KH. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2010;51:938–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Knight OJ, Chang RT, Feuer WJ, Budenz DL, et al. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116:1271–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Leung CK, Ye C, Weinreb RN, Cheung CY, Qiu Q, Liu S, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a study on diagnostic agreement with Heidelberg retinal tomograph. Ophthalmology. 2010;117:267–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Quigley HA, Reacher M, Katz J, Strahlman E, Gilbert D, Scott R, et al. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993;100:1800–7.PubMedCrossRefGoogle Scholar
  20. 20.
    DeLong ER, DeLong DM, Clarke-Pearson DL, et al. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63 (63 e1–2).PubMedCrossRefGoogle Scholar
  22. 22.
    Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010;117:1684–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim NR, Lee ES, Seong GJ, Choi EH, Hong S, Kim CY, et al. Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma. Arch Ophthalmol. 2010;128:1121–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Park SB, Sung KR, Kang SY, Kim KR, Kook MS, et al. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol. 2009;127:1603–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Moreno-Montanes J, Olmo N, Alvarez A, Garcia N, Zarranz-Ventura J. Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci. 2010;51:335–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Chang RT, Knight OJ, Feuer WJ, Budenz DL, et al. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009;116:2294–9.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2013

Authors and Affiliations

  • Ko Eun Kim
    • 1
    • 2
  • Seok Hwan Kim
    • 1
    • 3
    Email author
  • Jin Wook Jeoung
    • 1
    • 2
  • Ki Ho Park
    • 1
    • 2
  • Tae Woo Kim
    • 1
    • 4
  • Dong Myung Kim
    • 1
    • 2
  1. 1.Department of OphthalmologySeoul National University College of MedicineSeoulKorea
  2. 2.Department of OphthalmologySeoul National University HospitalSeoulKorea
  3. 3.Department of OphthalmologySeoul National University Boramae HospitalSeoulKorea
  4. 4.Department of OphthalmologySeoul National University Bundang HospitalSeongnamKorea

Personalised recommendations