Skip to main content

Advertisement

Log in

Four discriminant models for detecting keratoconus pattern using Zernike coefficients of corneal aberrations

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We compared the ability of four discriminant models to detect keratoconus (KC) using Zernike coefficients of corneal aberrations.

Methods

We studied 51 eyes with KC, 46 with KC suspect, 50 after laser in situ keratomileusis, and 65 normal eyes. Four statistical discriminant analyses—linear discriminant analysis, k-nearest neighbor algorithm, Mahalanobis distance method, and neural network method—were performed using Zernike coefficients of corneal aberrations obtained by a Placido-based topographer. The detection scheme was constructed using a training set of data from one half of the randomly selected study participants, and performance was evaluated by a validation set in the other half.

Results

Performance of the four models was different when <12 explanatory variables were included. Performance using the 2nd- to 4th-order Zernike terms did not differ significantly among models; average accuracy was 79 %.

Conclusions

Determining explanatory variables of Zernike expansion coefficients of the corneal topography in discriminant models may contribute to improving accuracy of KC detection over the discriminant model, as appropriate selection of explanatory variables gave similar results despite different discriminant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322.

    Article  PubMed  CAS  Google Scholar 

  2. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319.

    Article  PubMed  CAS  Google Scholar 

  3. Keates RH, Falkenstein S. Keratoplasty in keratoconus. Am J Ophthmol. 1972;74:442–4.

    CAS  Google Scholar 

  4. Kim KH, Choi SH, Ahn K, Chung ES, Chung TY. Comparison of refractive changes after deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus. Jpn J Ophthalmol. 2011;55:93–7.

    Article  PubMed  Google Scholar 

  5. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24:1007–9.

    Article  PubMed  CAS  Google Scholar 

  6. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003;110:267–75.

    Article  PubMed  Google Scholar 

  7. Klyce SD. Chasing the suspect: keratoconus. Br J Ophthalmol. 2009;93:845–7.

    Article  PubMed  Google Scholar 

  8. Snibson GR. Collagen cross-linking: a new treatment paradigm in corneal disease—a review. Clin Exp Ophthalmol. 2010;38:141–53.

    Article  Google Scholar 

  9. Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg. 1989;5:400–8.

    PubMed  CAS  Google Scholar 

  10. Wilson SE, Lin DT, Klyce SD. Corneal topography of keratoconus. Cornea. 1991;10:2–8.

    PubMed  CAS  Google Scholar 

  11. Schwiegerling J, Greivenkamp JE, Miller JM. Representation of videokeratoscopic height data with Zernike polynomials. J Opt Soc Am A Opt Image Sci Vis. 1995;12:2105–13.

    Article  PubMed  CAS  Google Scholar 

  12. Auffarth GU, Wang L, Völcker HE. Keratoconus evaluation using the Orbscan Topography System. J Cataract Refract Surg. 2000;26:222–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bessho K, Maeda N, Kuroda T, Fujikado T, Tano Y, Oshika T. Automated keratoconus detection using height data of anterior and posterior corneal surfaces. Jpn J Ophthalmol. 2006;50:409–16.

    Article  PubMed  Google Scholar 

  14. de Sanctis U, Loiacono C, Richiardi L, Turco D, Mutani B, Grignolo FM. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008;115:1534–9.

    Article  PubMed  Google Scholar 

  15. Li Y, Meisler DM, Tang M, Lu ATH, Thakrar V, Reiser BJ, et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology. 2008;115:2159–66.

    Article  PubMed  Google Scholar 

  16. Miháltz K, Kovács I, Kránitz K, Erdei G, Németh J, Nagy ZZ. Mechanism of aberration balance and the effect on retinal image quality in keratoconus: optical and visual characteristics of keratoconus. J Cataract Refract Surg. 2011;37:914–22.

    Article  PubMed  Google Scholar 

  17. Twa MD, Parthasarathy S, Roberts C, Mahmoud AM, Raasch TW, Bullimore MA. Automated decision tree classification of corneal shape. Optom Vis Sci. 2005;82:1038–46.

    Article  PubMed  Google Scholar 

  18. Chastang PJ, Borderie VM, Carvajal-Gonzalez S, Rostène W, Laroche L. Automated keratoconus detection using the EyeSys videokeratoscope. J Cataract Refract Surg. 2000;26:675–83.

    Article  PubMed  CAS  Google Scholar 

  19. Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci. 1995;36:1327–35.

    PubMed  CAS  Google Scholar 

  20. Carvalho LA. Preliminary results of neural networks and Zernike polynomials for classification of videokeratography maps. Optom Vis Sci. 2005;82:151–8.

    Article  PubMed  Google Scholar 

  21. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg. 1999;25:1327–35.

    Article  PubMed  CAS  Google Scholar 

  22. Kosaki R, Maeda N, Bessho K, Hori Y, Nishida K, Suzaki A, et al. Magnitude and orientation of Zernike terms in patients with keratoconus. Invest Ophthalmol Vis Sci. 2007;48:3062–8.

    Article  PubMed  Google Scholar 

  23. Alió JL, Shabayek MH. Corneal higher order aberrations: a method to grade keratoconus. J Refract Surg. 2006;22:539–45.

    PubMed  Google Scholar 

  24. Rand RH, Howland HC, Applegate RA. Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography. Optom Vis Sci. 1997;74:926–30.

    Article  PubMed  CAS  Google Scholar 

  25. Thibos LN, Applegate RA, Schwiegerling JT, Webb R. Standards for reporting the optical aberrations of eyes. J Refract Surg. 2002;18:652–60.

    Google Scholar 

  26. Howland HC, Howland B. A subjective method for the measurement of monochromatic aberrations of the eye. J Opt Soc Am. 1977;67:1508–18.

    Article  PubMed  CAS  Google Scholar 

  27. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936;7:179–88.

    Article  Google Scholar 

  28. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13:21–7.

    Article  Google Scholar 

  29. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–33.

    Article  Google Scholar 

  30. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA. 1982;79:2554–8.

    Article  PubMed  CAS  Google Scholar 

  31. R Development Core team (2007). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org.

  32. Marcos S, Barbero S, Llorente L, Merayo-Lloves J. Optical response to LASIK surgery for myopia from total and corneal aberration measurements. Invest Ophthalmol Vis Sci. 2001;42:3349–56.

    PubMed  CAS  Google Scholar 

  33. Kamiya K, Hirohara Y, Mihashi T, Hiraoka T, Kaji Y, Oshika T. Progression of pellucid marginal degeneration and higher-order wavefront aberration of the cornea. Jpn J Ophthalmol. 2003;47:523–5.

    Article  PubMed  Google Scholar 

  34. Oie Y, Maeda N, Kosaki R, Suzaki A, Hirohara Y, Mihashi T, et al. Characteristics of ocular higher-order aberrations in patients with pellucid marginal corneal degeneration. J Cataract Refract Surg. 2008;34:1928–34.

    Article  PubMed  Google Scholar 

  35. Smolek MK, Klyce SD. Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces. J Cataract Refract Surg. 2005;31:2350–5.

    Article  PubMed  Google Scholar 

  36. Karnowski K, Kaluzny BJ, Szkulmowski M, Gora M, Wojtkowski M. Corneal topography with high-speed swept source OCT in clinical examination. Biomed Opt Express. 2011;2:2709–20.

    Article  PubMed  Google Scholar 

  37. Ortiz S, Pérez-Merino P, Alejandre N, Gambra E, Jimenez-Alfaro I, Marcos S. Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments. Biomed Opt Express. 2012;3:814–24.

    Article  PubMed  Google Scholar 

  38. Bühren J, Kook D, Yoon G, Kohnen T. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci. 2010;51:3424–32.

    Article  PubMed  Google Scholar 

  39. Saad A, Gatinel D. Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus. Invest Ophthalmol Vis Sci. 2012;53:2978–92.

    Article  PubMed  Google Scholar 

  40. Schweitzer C, Roberts CJ, Mahmoud AM, Colin J, Maurice-Tison S, Kerautret J. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2010;51:2403–10.

    Article  PubMed  Google Scholar 

  41. Wilson SE, Lin DTC, Klyce SD, Reidy JJ, Insler MS. Topographic changes in contact lens-induced corneal warpage. Ophthalmology. 1990;97:734–44.

    Article  PubMed  CAS  Google Scholar 

  42. Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44:1–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by the Japan Ministry of Education, Science, Sports, and Culture, Tokyo, Japan (No. 24592669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Maeda.

About this article

Cite this article

Saika, M., Maeda, N., Hirohara, Y. et al. Four discriminant models for detecting keratoconus pattern using Zernike coefficients of corneal aberrations. Jpn J Ophthalmol 57, 503–509 (2013). https://doi.org/10.1007/s10384-013-0269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-013-0269-1

Keywords

Navigation