Japanese Journal of Ophthalmology

, Volume 57, Issue 3, pp 275–282 | Cite as

Branch retinal vein occlusion-associated subretinal hemorrhage

  • Yuki Muraoka
  • Akitaka Tsujikawa
  • Tomoaki Murakami
  • Ken Ogino
  • Kazuaki Miyamoto
  • Nagahisa Yoshimura
Clinical Investigation



To study the pathomorphology of subretinal hemorrhage (SRH) seen in eyes with branch retinal vein occlusion (BRVO) and its association with visual prognosis.


We retrospectively reviewed 42 consecutive patients (42 eyes) with BRVO that affected the fovea. Retinal structural changes were examined by spectral domain optical coherence tomography (SD-OCT).


On SD-OCT sections, serous retinal detachment was seen at the fovea in 35 eyes, 18 of which accompanied foveal SRH. While initial detection of foveal SRH had no correlation with initial visual acuity (VA), it was correlated with poorer final VA (r = 0.361, P = 0.019). Our patients were classified into two groups by the initial detection of foveal SRH, and initial VA was not different between these two groups. At the final examination, damaged lengths in the foveal photoreceptor layer were significantly longer in the SRH-positive group than those in the SRH-negative group (P = 0.004), and final VA in the SRH-positive group was significantly worse than that in the SRH-negative group (P = 0.019).


Foveal SRH is not an uncommon feature in BRVO and may cause subsequent damage to the foveal photoreceptor layer, resulting in poor visual function.


Branch retinal vein occlusion Subretinal hemorrhage Photoreceptor damage Spectral-domain optical coherence tomography 


  1. 1.
    Hayreh SS, Rojas P, Podhajsky P, Montague P, Woolson RF. Ocular neovascularization with retinal vascular occlusion-III. Incidence of ocular neovascularization with retinal vein occlusion. Ophthalmology. 1983;90:488–506.PubMedGoogle Scholar
  2. 2.
    Wong TY, Scott IU. Clinical practice. Retinal-vein occlusion. N Engl J Med. 2010;363:2135–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Jonas J, Paques M, Mones J, Glacet-Bernard A. Retinal vein occlusions. Dev Ophthalmol. 2010;47:111–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayashi A, Yunoki T, Miyakoshi A, Mitarai K, Fujino T, Yanagisawa S. Intravitreal injection of bevacizumab combined with macular grid laser photocoagulation for macular edema in branch retinal vein occlusion. Jpn J Ophthalmol. 2011;55:625–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Hanada N, Iijima H, Sakurada Y, Imasawa M. Recurrence of macular edema associated with branch retinal vein occlusion after intravitreal bevacizumab. Jpn J Ophthalmol. 2012;56:165–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Yunoki T, Miyakoshi A, Nakamura T, Fujita K, Fuchizawa C, Hayashi A. Treatment of macular edema due to branch retinal vein occlusion with single or multiple intravitreal injections of bevacizumab. Jpn J Ophthalmol. 2012;56:159–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Harino S, Bessho K, Kida T. Prospective multicenter study of visual outcomes following three different treatments for macular edema associated with branch retinal vein occlusion: a study by the Japanese BRVO study group. Jpn J Ophthalmol. 2012;56:250–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Spaide RF, Lee JK, Klancnik JK Jr, Gross NE. Optical coherence tomography of branch retinal vein occlusion. Retina. 2003;23:343–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Lerche RC, Schaudig U, Scholz F, Walter A, Richard G. Structural changes of the retina in retinal vein occlusion–imaging and quantification with optical coherence tomography. Ophthalmic Surg Lasers. 2001;32:272–80.PubMedGoogle Scholar
  10. 10.
    Yamaike N, Tsujikawa A, Ota M, Sakamoto A, Kotera Y, Kita M, et al. Three-dimensional imaging of cystoid macular edema in retinal vein occlusion. Ophthalmology. 2008;115:355–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsujikawa A, Sakamoto A, Ota M, Kotera Y, Oh H, Miyamoto K, et al. Serous retinal detachment associated with retinal vein occlusion. Am J Ophthalmol. 2010;149:291–301.PubMedCrossRefGoogle Scholar
  12. 12.
    Shroff D, Mehta DK, Arora R, Narula R, Chauhan D. Natural history of macular status in recent-onset branch retinal vein occlusion: an optical coherence tomography study. Int Ophthalmol. 2008;28:261–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Battaglia Parodi M, Isola V. Branch retinal vein occlusion and exudative retinal detachment: pathogenetical aspects. Ophthalmologica. 1994;208:29–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Ravalico G, Battaglia Parodi M. Exudative retinal detachment subsequent to retinal vein occlusion. Ophthalmologica. 1992;205:77–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL. The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2005;46:3349–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA Jr, et al. Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci. 2004;45:2399–406.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen TC, Cense B, Miller JW, Rubin PA, Deschler DG, Gragoudas ES, et al. Histologic correlation of in vivo optical coherence tomography images of the human retina. Am J Ophthalmol. 2006;141:1165–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145:273–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Ota M, Tsujikawa A, Kita M, Miyamoto K, Sakamoto A, Yamaike N, et al. Integrity of foveal photoreceptor layer in central retinal vein occlusion. Retina. 2008;28:1502–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Oishi A, Hata M, Shimozono M, Mandai M, Nishida A, Kurimoto Y. The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am J Ophthalmol. 2010;150:27–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Murakami T, Nishijima K, Sakamoto A, Ota M, Horii T, Yoshimura N. Association of pathomorphology, photoreceptor status, and retinal thickness with visual acuity in diabetic retinopathy. Am J Ophthalmol. 2011;151:310–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Murakami T, Tsujikawa A, Ohta M, Miyamoto K, Kita M, Watanabe D, et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol. 2007;143:171–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Scott IU, VanVeldhuisen PC, Oden NL, Ip MS, Blodi BA, Hartnett ME, et al. Baseline predictors of visual acuity and retinal thickness outcomes in patients with retinal vein occlusion: Standard Care Versus COrticosteroid for REtinal Vein Occlusion Study report 10. Ophthalmology. 2011;118:345–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumagai K, Furukawa M, Ogino N, Larson E, Uemura A. Long-term visual outcomes after vitrectomy for macular edema with foveal hemorrhage in branch retinal vein occlusion. Retina. 2007;27:584–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1094–101.PubMedCrossRefGoogle Scholar
  26. 26.
    Avery RL, Fekrat S, Hawkins BS, Bressler NM. Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina. 1996;16:183–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Bennett SR, Folk JC, Blodi CF, Klugman M. Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am J Ophthalmol. 1990;109:33–7.PubMedGoogle Scholar
  28. 28.
    Schulze SD, Hesse L. Tissue plasminogen activator plus gas injection in patients with subretinal hemorrhage caused by age-related macular degeneration: predictive variables for visual outcome. Graefes Arch Clin Exp Ophthalmol. 2002;240:717–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Singh RP, Patel C, Sears JE. Management of subretinal macular haemorrhage by direct administration of tissue plasminogen activator. Br J Ophthalmol. 2006;90:429–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsujikawa A, Sakamoto A, Ota M, Oh H, Miyamoto K, Kita M, et al. Retinal structural changes associated with retinal arterial macroaneurysm examined with optical coherence tomography. Retina. 2009;29:782–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Ojima Y, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Yoshimura N. Restoration of outer segments of foveal photoreceptors after resolution of central serous chorioretinopathy. Jpn J Ophthalmol. 2010;54:55–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Toth CA, Morse LS, Hjelmeland LM, Landers MB 3rd. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109:723–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Koshibu A. [Ultrastructural studies on absorption of experimentally produced subretinal hemorrhage. 2. Autolysis of macrophages and disappearance of erythrocytes from the subretinal space at the late stage]. Nippon Ganka Gakkai Zasshi (in Japanese). 1978;82:471–9.Google Scholar
  34. 34.
    Koshibu A. [Ultrastructural studies on absorption of an experimentally produced subretinal hemorrhage. III. Absorption of erythrocyte break down products and retinal hemosiderosis at the late stage]. Nippon Ganka Gakkai Zasshi (in Japanese). 1979;83:386–400.Google Scholar
  35. 35.
    el Baba F, Jarrett WH 2nd, Harbin TS Jr, Fine SL, Michels RG, Schachat AP, et al. Massive hemorrhage complicating age-related macular degeneration. Clinicopathologic correlation and role of anticoagulants. Ophthalmology. 1986;93:1581–92.PubMedGoogle Scholar
  36. 36.
    Glatt H, Machemer R. Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol. 1982;94:762–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Steel DH, Sandhu SS. Submacular haemorrhages associated with neovascular age-related macular degeneration. Br J Ophthalmol. 2011;95:1051–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Bhisitkul RB, Winn BJ, Lee OT, Wong J, Wong J, Wong J, Wong J, Wong J, Pereira Dde S, Porco TC, et al. Neuroprotective effect of intravitreal triamcinolone acetonide against photoreceptor apoptosis in a rabbit model of subretinal hemorrhage. Invest Ophthalmol Vis Sci. 2008;49:4071–7.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2013

Authors and Affiliations

  • Yuki Muraoka
    • 1
  • Akitaka Tsujikawa
    • 1
  • Tomoaki Murakami
    • 1
  • Ken Ogino
    • 1
  • Kazuaki Miyamoto
    • 1
  • Nagahisa Yoshimura
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations