Japanese Journal of Ophthalmology

, Volume 57, Issue 1, pp 1–24 | Cite as

Test–retest variability in structural parameters measured with glaucoma imaging devices

Review

Abstract

In addition to classical stereo-disc photography, various glaucoma imaging devices were developed in the last two decades to quantitatively measure and record glaucoma-related structural parameters of the eye. In determining whether or not the glaucomatous damage progressed from baseline and in estimating the number of test results’ optimal frequency needed to confirm disease progression, information relating to the test–retest variability of measurement results provided by each imaging device is indispensable. Such information enables the clinician to apply these devices in practice. The test–retest variability of a system is usually estimated using the Bland–Altman analysis and by calculating the coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum detectable changes (MDC). The reported CV, ICC, and MDC values for glaucoma-related structural parameter measurement results of stereo-disc photographs, confocal scanning laser ophthalmoscopes, scanning laser polarimeters, time-domain optical coherence tomography (OCT), spectral-domain OCT (SD-OCT), anterior-segment OCT, and ultrasound biomicroscope are systematically reviewed in this manuscript, which will enable the clinician to interpret measurement results provided by each glaucoma imaging devices and thus be useful in practice. Although SD-OCT systems may be currently prevailing because of the volume of information provided and the relatively better test–retest variability, these systems need improvement in their test–retest variability measurement capabilities.

Keywords

Test–retest variability Stereo-disc photograph Confocal scanning laser ophthalmoscope Confocal scanning polarimeter Optical coherence tomography 

References

  1. 1.
    Chauhan BC, Garway-Heath DF, Gońi FJ, Rossetti L, Bengtsson B, Viswanathan AC, et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol. 2008;92:569–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Bunce C. Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies. Am J Ophthalmol. 2009;148:4–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. Hoboken: Wiley; 2003.CrossRefGoogle Scholar
  6. 6.
    Shrout PE, Fleiss JL. Intraclass correlations: use in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartko JJ. On various intraclass correlation reliability coefficient. Psychol Bull. 1976;83:727–5.CrossRefGoogle Scholar
  8. 8.
    Tsushima H. Intraclass correlation coefficient as a measure of reliability. http://www.hs.hirosaki-u.ac.jp/~pteiki/research/stat/icc.pdf Accessed 14 May 2012.
  9. 9.
    Shimoi T, Tani H. The absolute reliability of two different tandem gait tests with minimal detectable change. Rigakuryoho Kagaku (in Japanese). 2009;25:49–53.CrossRefGoogle Scholar
  10. 10.
    Faber MJ, Bosscher RJ, van Wieringen PCW. Clinical properties of the performance-oriented mobility assessment. Phys Ther. 2006;86:944–54.PubMedGoogle Scholar
  11. 11.
    Strouthidis NG, White ET, Owen VM, Ho TA, Hammond CJ, Garway-Heath DF. Factors affecting the test–retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol. 2005;89:1427–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Fayers T, Strouthidis NG, Garway-Heath DF. Monitoring glaucomatous progression using event. Ophthalmology. 2007;114:1973–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Caprioli J, Jonas J, Vasile C. Optic disc photographs. In: Weireb RN, Greve EL, editors. Glaucoma diagnosis. Structure and function. The Hague: Kugler Publications; 2004. p. 39–46.Google Scholar
  14. 14.
    Parish RK II, Schiffman JC, Feuer WJ, Anderson DR, Budenz DL, Wells-Albornoz MC, et al. Ocular Hypertension treatment study group. Test–retest reproducibility of optic disc deterioration detected from stereophotographs by masked graders. Am J Ophthalmol. 2005;140:762–4.Google Scholar
  15. 15.
    Zeyen T, Miglior S, Pfeiffer N, Cunna-Vaz J, European Glaucoma Prevention Study Group. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology. 2003;110:340–4.PubMedCrossRefGoogle Scholar
  16. 16.
    O’Leary N, Crabb DP, Mansberger SL, Fortune B, Twa MD, Lloyd MJ, et al. Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomography images. Arch Ophthalmol. 2010;128:560–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.Google Scholar
  18. 18.
    The European Glaucoma Prevention Study (EGPS) Group. Results of the European glaucoma prevention study. Ophthalmology. 2005;112:366–75.CrossRefGoogle Scholar
  19. 19.
    Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. Arch Ophthalmol. 1979;97:1444–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Klein BE, Magli YL, Richie KA, Moss SE, Meuer SM, Klein R. Quantitation of optic disc cupping. Ophthalmology. 1985;92:1654–6.PubMedGoogle Scholar
  21. 21.
    Klein BE, Moss SE, Magli YL, Klein R, Johnson JC, Roth H. Optic disc cupping as clinically estimated from photographs. Ophthalmology. 1987;94:1481–3.PubMedGoogle Scholar
  22. 22.
    Tielsch JM, Katz J, Quigley HA, Miller NR, Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Opthalmology. 1988;95:350–6.Google Scholar
  23. 23.
    Varma R, Spaeth GL, Steinmann WC, Katz LJ. Agreement between clinicians and an image analyzer in estimating cup-to-disc ratios. Arch Ophthalmol. 1989;107:526–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99:215–21.PubMedGoogle Scholar
  25. 25.
    Abrams LS, Scott IU, Spaeth GL, Quigley HA, Varma R. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology. 1994;101:1662–7.PubMedGoogle Scholar
  26. 26.
    Zangwill L, Shakiba S, Caprioli J, Weinreb RN. Agreement between clinicians and a confocal scanning laser ophthalmoscope in estimating cup/disc ratios. Am J Ophthalmol. 1995;119:415–21.PubMedGoogle Scholar
  27. 27.
    Morgan JE, Sheen NJL, North RV, Goyal R, Morgan S, Ansari E, et al. Discrimination of glaucomatous optic neuropathy by digital stereoscopic analysis. Ophthalmology. 2005;112:855–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Caprioli J, Prum B, Zeyen T. Comparison of methods to evaluate the optic nerve head and nerve fiber layer for glaucomatous change. Am J Ophthalmol. 1996;121:659–67.PubMedGoogle Scholar
  29. 29.
    Rosenthal AR, Kottler MS, Donaldson DD, Falconer DG. Comparative reproducibility of the digital photogrammetric procedure utilizing three methods of stereophotography. Invest Ophthalmol Vis Sci. 1977;16:54–60.PubMedGoogle Scholar
  30. 30.
    Takamoto T, Schwartz B. Reproducibility of photogrammetric optic disc cup measurements. Invest Ophthalmol Vis Sci. 1985;26:814–7.PubMedGoogle Scholar
  31. 31.
    Stürmer J, Poinoosawmy D, Broadway DC, Hitchings RA. Intra- and inter-observer variation of optic nerve head measurements in glaucoma suspects using disc-data. Int Ophthalmol. 1992;16:227–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Garway-Heath DF, Poinoosawmy D, Wollstein G, Viswanathan A, Kamal D, Fontana L, et al. Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry. Br J Ophthalmol. 1999;83:664–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Nguyen NX, Meindl C, Horn FK, Dzialach M, Langenbucher A, Jünemann A, et al. Digital planimetry for long-term follow-up of glaucomatous optic disk injuries in patients with normal pressure glaucoma. Ophthalmologe (in German). 2004;101:589–94.Google Scholar
  34. 34.
    Gramer E, Siebert M. Optic nerve head measurements: the optic nerve head analyzer—its advantages and its limitations. Int Ophthalmol. 1989;13:3–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Funk J, Steeb R. Improved reproducibility of computer-assisted structural analysis of the optic papilla. Klin Monbl Augenheilkd (in German). 1991;199:25–9.CrossRefGoogle Scholar
  36. 36.
    Janknecht P, Funk J. Optic nerve head analyzer and Heidelberg retina tomograph: accuracy and reproducibility of topographic measurements in a model eye and in volunteers. Br J Ophthalmol. 1994;78:760–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Shields MB, Martone JF, Shelton AR, Ollie AR, Macmillan J. Reproducibility of topographic measurements with the optic nerve head analyzer. Am J Ophthalmol. 1987;104:581–6.PubMedGoogle Scholar
  38. 38.
    Mikelberg FS, Douglas GR, Schulzer M, Cormsweet TN, Wijsman K. Reliability of optic disk topographic measurements recorded with a video-ophthalmograph. Am J Ophthalmol. 1984;98:98–102.PubMedCrossRefGoogle Scholar
  39. 39.
    Caprioli J, Klingbeil U, Sears M, Pope B. Reproducibility of optic disc measurements with computerized analysis of stereoscopic video images. Arch Ophthalmol. 1986;104:1035–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Azuara-Blanco A, Harris A, Cantor LB. Reproducibility of optic disk topographic measurements with the Topcon ImageNet and the Heidelberg Retina Tomograph. Ophthalmologica. 1998;212:95–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Nanba K, Shirakashi M, Fukuchi T, Iwata K. Stereomorphometry of optic disc cupping with a computer image analyzer IMAGE net. Rinsho Ganka (in Japanese). 1989;43:535–8.Google Scholar
  42. 42.
    Janknecht P, Funk J. Optic nerve head analyzer and Heidelberg retinal tomograph: relative error and reproducibility of topographic measurements in a model eye with simulated cataract. Graefes Arch Clin Exp Ophthalmol. 1995;233:523–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Azuara-Blanco A, Spaeth GL, Nicholl J, Lanzl IM, Augsburger JJ. Comparison between laser scanning tomography and computerised image analysis of the optic disc. Br J Ophthalmol. 1999;83:295–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Azuara-Blanco A, Katz LJ, Spaeth GL, Nicholl J, Lanzl IM. Detection of changes of the optic disc in glaucomatous eyes: clinical examination and image analysis with the Topcon Imagenet system. Acta Ophthalmol Scand. 2000;78:647–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Ikram MK, Borger PH, Assink JJ, Jonas JB, Hofman A, de Jong PT. Comparing ophthalmoscopy, slide viewing, and semiautomated systems in optic disc morphometry. Ophthalmology. 2002;109:486–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Sung VCT, Bhan A, Vernon SA. Agreement in assessing optic discs with a digital stereoscopic optic disc camera (Discam) and Heidelberg retina tomograph. Br J Ophthalmol. 2002;86:196–202.PubMedCrossRefGoogle Scholar
  47. 47.
    Shuttleworth GN, Khong CH, Diamong JP. A new digital optic stereo camera: intraobserver and interobserver repeatability of optic disc measurements. Br J Ophthalmol. 2000;84:403–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Saito H, Tsutsumi T, Iwase A, Tomidokoro A, Araie M. Correlation of disc morphology quantified on stereophotographs to results by Heidelberg retina tomograph II, GDx variable corneal compensation, and visual field tests. Ophthalmology. 2010;117:282–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Correnti AJ, Wollstein G, Price LL, Schuman JS. Comparison of optic nerve head assessment with a digital stereoscopic camera (Discam), scanning laser ophthalmoscopy, and stereophotography. Ophthalmology. 2003;110:1499–505.PubMedCrossRefGoogle Scholar
  50. 50.
    Jayasundera T, Danesh-Meyer HV, Donaldson M, Gamble G. Agreement between stereoscopic photographs, clinical assessment, Heidelberg retina tomograph and digital stereoscopic optic disc camera in estimating vertical cup: disc ratio. Clin Exp Ophthalmol. 2005;33:259–63.CrossRefGoogle Scholar
  51. 51.
    Januschowski K, Blumenstock G, Rayford CE 2nd, Bartz-Schmidt KU, Shiefer U, Ziemssen F. Stereometric parameters of the optic disc. Comparison between a simultaneous non-mydriatic stereoscopic fundus camera (KOWA WX 3D) and the Heidelberg scanning laser ophthalmoscope (HRT III). Ophthalmologe (in German). 2011;108:957–62.CrossRefGoogle Scholar
  52. 52.
    Quigley HA, Katz J, Derick R, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.PubMedGoogle Scholar
  53. 53.
    Kim TW, Park UC, Park KH, Kim DM. Ability of Stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. Invest Ophthalmol Vis Sci. 2007;48:1635–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Suh MH, Kim DM, Kim YK, Kim TW, Park KH. Patterns of progression of localized retinal nerve fiber layer defect on red-free fundus photographs in normal-tension glaucoma. Eye. 2010;24:857–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Yoo YC, Park KH. Influence of angular width and peripapillary position of localized retinal nerve fiber layer defects on their detection by time-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:115–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Nitta K, Sugiyama K, Higashide T, Ohkubo S, Tanahashi T, Kitazawa Y. Does the enlargement of retinal nerve fiber layer defects relate to disc hemorrhage or progressive visual field loss in normal-tension glaucoma? J Glaucoma. 2011;20:189–95.PubMedCrossRefGoogle Scholar
  57. 57.
    Hwang JM, Kim TW, Park KH, Kim DM, Kim H. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and red-free fundus photography. J Glaucoma. 2006;15:223–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Yoo YC, Park KH. Comparison of optical coherence tomography and scanning laser polarimetry for detection of localized retinal nerve fiber layer defects. J Glaucoma. 2010;19:229–36.PubMedCrossRefGoogle Scholar
  59. 59.
    Jeoung JW, Park KH, Kim TW, Khwarg SI, Kim DM. Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects. Ophthalmology. 2005;112:2157–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Jeoung JW, Park KH. Comparison of cirrus OCT and stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2010;51:938–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Nukada M, Hangai M, Mori S, Nakano N, Nakanishi H, Ohashi-Ikeda H, et al. Detection of localized retinal nerve fiber layer defects in glaucoma using enhanced spectral-domain optical coherence tomography. Ophthalmology. 2011;118:1038–48.PubMedCrossRefGoogle Scholar
  62. 62.
    Tan JCH, Hitchings RA. Reference plane definition and reproducibility in optic nerve head images. Invest Ophthalmol Vis Sci. 2003;44:1132–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Jampel HD, Vitale S, Ding Y, Quigley H, Friedman D, Congdon N, Zeimer R. Test–retest variability in structural and functional parameters of glaucoma damage in the glaucoma imaging longitudinal study. J Glaucoma. 2006;15:152–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Strouthidis NG, White ET, Owen VM, Ho TA, Garway-Heath DF. Improving the repeatability of Heidelberg retina tomograph and Heidelberg retina tomograph II rim area measurements. Br J Ophthalmol. 2005;89:1433–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Ortega JED, Sakata LM, Kakati B, McGwin G Jr, Monheit BE, Arthur SN, et al. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:1156–63.CrossRefGoogle Scholar
  66. 66.
    Leung CKS, Kheung CYL, Lin D, Pang CP, Lam DSC, Weinreb RN. Longitudinal variability of optic disc and retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2008;49:4886–92.PubMedCrossRefGoogle Scholar
  67. 67.
    Asaoka R, Strouthidis NG, Kappou V, Gardiner SK, Garway-Heath DF. HRT-3 Moorfields reference plane: effect on rim area repeatability and identification of progression. Br J Ophthalmol. 2009;93:1510–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Lin D, Leung CKS, Weinreb RN, Cheung CYL, Li H, Lam DSC. Longitudinal evaluation of optic disc measurement variability with optical coherence tomography and confocal scanning laser ophthalmoscopy. J Glaucoma. 2009;18:101–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Shpak AA, Sevostyanova MK, Ogorodnikova SN, Shormaz IN. Comparison of measurement error of cirrus HD-OCT and Heidelberg retina tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol. 2012;250:271–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Rohrschneider AK, Burk ROW, Völcker HE. Reproducibility of topometric data acquisition in normal and glaucomatous optic nerve heads with the laser tomographic scanner. Graefes Arch Clin Exp Ophthalmol. 1993;231:457–64.PubMedCrossRefGoogle Scholar
  71. 71.
    Sihota R, Gulati V, Agarwal HC, Saxena R, Sharma A, Pandey RM. Variables affecting test–retest variability of Heidelberg retina tomograph II stereometric parameters. J Glaucoma. 2002;11:321–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Miglior S, Albé E, Guareschi M, Rossetti L, Orzalesi N. Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg retina tomograph. Ophthalmology. 2002;109:1072–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Watkins RJ, Broadway DC. Intraobserver and interobserver reliability indices for drawing scanning laser ophthalmoscope optic disc contour lines with and without the aid of optic disc photographs. J Glaucoma. 2005;14:351–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Larsson E, Nuija E, Alm A. The optic nerve head assessed with HRT in 5–16-year-old normal children: normal values, repeatability and interocular difference. Acta Ophthalmol. 2011;89:755–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Chauhan BC, LeBlanc RP, McCormick TA, Rogers JB. Test–retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects. Am J Ophthalmol. 1994;118:9–15.PubMedGoogle Scholar
  76. 76.
    Brigatti L, Weitzman M, Caprioli J. Regional test–retest variability of confocal scanning laser tomography. Am J Ophthalmol. 1995;120:433–40.PubMedGoogle Scholar
  77. 77.
    Tan JCH, Garway-Heath DF, Fitzke FW, Hitchings RA. Reasons for rim area variability in scanning laser tomography. Invest Ophthalmol Vis Sci. 2003;44:1126–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Poli A, Strouthidis NG, Ho TA, Garway-Heath DF. Analysis of HRT images: comparison of reference planes. Invest Ophthalmol Vis Sci. 2008;49:3970–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Tan JCH, Garway-Heath DF, Hitchings RA. Variability across the optic nerve head in scanning laser tomography. Br J Ophthalmol. 2003;87:557–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Owen VMF, Strouthidis NG, Garway-Heath DF, Crabb DP. Measurement variability in Heidelberg retinal tomography imaging of neuroretinal rim area. Invest Ophthalmol Vis Sci. 2006;47:5322–30.PubMedCrossRefGoogle Scholar
  81. 81.
    See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and peripapillary atrophy area change: a comparative study of glaucoma patients and normal controls. Ophthalmology. 2009;116:840–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA, et al. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci. 2010;51:3531–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Harju M, Kurvinen L, Saari J, Vesti E. Change in optic nerve head topography in healthy volunteers: an 11-year follow-up. Br J Ophthlamol. 2011;95:818–21.CrossRefGoogle Scholar
  84. 84.
    Strouthidis N, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci. 2006;47:2904–10.PubMedCrossRefGoogle Scholar
  85. 85.
    Saarela V, Airaksinen PJ. Heidelberg retina tomography parameters of the optic disc in eyes with progressive retinal nerve fiber layer defects. Acta Ophthalmol. 2008;86:603–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci. 2000;41:1730–42.PubMedGoogle Scholar
  87. 87.
    Strouthidis NG, Demirel S, Asaoka R, Cossio-Zuniga C, Garway-Heath DF. The Heidelberg retina tomography glaucoma probability score. Reproducibility and measurement of progression. Ophthalmology. 2010;117:724–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Patterson AJ, Garway-Heath DF, Strouthidis NG, Crabb DP. A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. Invest Ophthalmol Vis Sci. 2005;46:1659–67.PubMedCrossRefGoogle Scholar
  89. 89.
    Chauhan BC, Blanchard JW, Hamilton DC, LeBlanc RP. Technique for detecting serial topographic changes in the optic disc and peripapillar retina using scanning laser tomography. Invest Ophthalmol Vis Sci. 2000;41:775–82.PubMedGoogle Scholar
  90. 90.
    Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol. 2001;119:1492–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Balasubramanian M, Bowd C, Weinreb RN, Vizzeri G, Alencar LM, Sample PA, et al. Clinical evaluation of the proper orthogonal decomposition framework for detecting glaucomatous changes in human subjects. Invest Ophthalmol Vis Sci. 2010;51:264–71.PubMedCrossRefGoogle Scholar
  92. 92.
    Bowd C, Balasubramanian M, Weinreb RN, Vizzeri G, Alencar LM, O’Leary N, et al. Performance of confocal scanning laser tomograph topographic change analysis (TCA) for assessing glaucomatous progression. Invest Ophthalmol Vis Sci. 2009;50:691–701.PubMedCrossRefGoogle Scholar
  93. 93.
    Kook MS, Sung K, Park RH, Kim ST, Kang W. Reproducibility of scanning laser polarimetry (GDx) of peripapillary retinal nerve fiber layer thickness in normal subjects. Graefes Arch Clin Exp Ophthalmol. 2001;239:118–21.PubMedCrossRefGoogle Scholar
  94. 94.
    Colen TP, Tjon-Fo-sang MJ, Mulder PG, Lemij HG. Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx). J Glaucoma. 2000;9:363–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Ferreri F, Aragona P, Ferreri G. Scanning laser polarimetry and confocal scanning laser ophthalmoscopy: technical notes on their use in glaucoma. Prog Brain Res. 2008;173:125–38.PubMedCrossRefGoogle Scholar
  96. 96.
    Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna R, Weinreb RN. Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. Am J Ophthalmol. 2009;148:155–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Toth M, Hollo G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol. 2005;89:1139–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2007;48:3146–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Medeiros FA, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry. Am J Ophthalmol. 2010;149:908–15.PubMedCrossRefGoogle Scholar
  100. 100.
    Grewal DS, Sehi M, Cook RJ, Greenfield DS, Advanced Imaging in Glaucoma Study Group. The impact of retardance pattern variability on nerve fiber layer measurements over time using GDx with variable and enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2011;52:4516–24.PubMedCrossRefGoogle Scholar
  101. 101.
    Grewal DS, Sehi M, The Advanced Imaging in Glaucoma Study Group. Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression. Br J Ophthalmol. 2011;95:1122–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Medeiros FA, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005;139:1010–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Pozzo SD, Marchesan R, Canziani T, Vattovani O, Ravalico G. Atypical pattern of retardation on GDx-VCC and its effect on retinal nerve fiber layer evaluation in glaucomatous eyes. Eye. 2006;20:769–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Garas A, Tóth M, Vargha P, Holló G. Influence of pupil dilation on repeatability of scanning laser polarimetry with variable and enhanced corneal compensation in different stages of glaucoma. J Glaucoma. 2010;19:142–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Frenkel S, Slonim E, Horani A, Molcho M, Barzel I, Blumenthal EZ. Operator learning effect and interoperator reproducibility of the scanning laser polarimeter with variable corneal compensation. Ophthalmology. 2005;112:257–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Blumenthal EZ, Frenkel S. Inter-device reproducibility of the scanning laser polarimeter with variable cornea compensation. Eye. 2005;19:308–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Iacono P, Da Pozzo S, Fuser M, Marchesan R, Ravalico G. Intersession reproducibility of retinal nerve fiber layer thickness measurements by GDx-VCC in healthy and glaucomatous eyes. Ophthalmologica. 2006;220:266–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Medeiros FA, Doshi R, Zangwill LM, Vasile C, Weinreb RN. Long-term variability of GDx VCC retinal nerve fiber layer thickness measurements. J Glaucoma. 2007;16:277–81.PubMedCrossRefGoogle Scholar
  109. 109.
    Mai TA, Reus NJ, Lemij HG. Retinal nerve fiber layer measurement repeatability in scanning laser polarimetry with enhanced corneal compensation. J Glaucoma. 2008;17:269–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Moon BG, Sung KR, Cho JW, Kang SY, Yun SC, Na JH, et al. Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis. Korean J Ophthalmol. 2012;26:174–81.PubMedCrossRefGoogle Scholar
  111. 111.
    Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Vizzeri G, Sample PA, et al. Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2009;50:1675–81.PubMedCrossRefGoogle Scholar
  112. 112.
    Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Weinreb RN. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009;116:1125–33.PubMedCrossRefGoogle Scholar
  113. 113.
    Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Vizzeri G, Sample PA, et al. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. Ophthalmology. 2010;117:462–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Grewal DS, Sehi M, Greenfield DS. Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using guided progression analysis. Br J Ophthalmol. 2011;95:502–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fiber layer for glaucoma. Br J Ophthalmol. 2009;93:139–43.PubMedCrossRefGoogle Scholar
  116. 116.
    Kieman DF, Mieler VF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149:18–31.CrossRefGoogle Scholar
  117. 117.
    Leung CK, Chong KK, Chan W, Yiu CK, Tso M, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.PubMedCrossRefGoogle Scholar
  118. 118.
    Paunescu LA, Schuman J, Price LL, Stark PC, Beaton S, Ishikawa H, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT. Invest Ophthalmol Vis Sci. 2004;45:1716–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Lee ES, Kim H, Kim JM. Effect of signal strength on reproducibility of peripapillary retinal nerve fiber layer thickness measurement and its classification by time-domain optical coherence tomography. Jpn J Ophthalmol. 2010;54:414–22.PubMedCrossRefGoogle Scholar
  120. 120.
    Kim JH, Kim NR, Kin H, Lee ES, Seong GJ, Kim CY. Effect of signal strength on reproducibility of circumpapillary retinal nerve fiber layer thickness measurement and its classification by spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2011;55:220–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Tzamalis A, Kynigopoulos M, Schlote T, Haefilger I. Improved reproducibility of retinal nerve fiber layer thickness measurements with the repeat-scan protocol using the stratus OCT in normal and glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2009;247:245–52.PubMedCrossRefGoogle Scholar
  122. 122.
    Gürses-Özden R, Teng C, Vessani R, Zafar S, Liebmann JM, Ritch R. Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3). J Glaucoma. 2004;13:238–44.PubMedCrossRefGoogle Scholar
  123. 123.
    Budenz DL, Chang RT, Huang X, Knighton R, Tielsch J. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005;46:2440–3.PubMedCrossRefGoogle Scholar
  124. 124.
    Budenz DL, Fredette M-J, Feuer WJ, Anderson DR. Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology. 2008;115:661–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim KM. Ability of stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci. 2009;50:662–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Kamppeter BA, Schbert KV, Budde WM, Degenring RF, Jonas JB. Optical coherence tomography of the optic nerve head—interindividual reproducibility. J Glaucoma. 2006;15:248–54.PubMedCrossRefGoogle Scholar
  127. 127.
    Leung CKS, Cheung CYL, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. A variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.PubMedCrossRefGoogle Scholar
  128. 128.
    Töteberg-Harms M, Sturm V, Knecht P, Funk J, Menke MN. Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol. 2012;250:279–87.PubMedCrossRefGoogle Scholar
  129. 129.
    Arthur SN, Smith SD, Wright MM, Grajewski AL, Wang Q, Terny JM, et al. Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between stratus and spectralis OCT. Eye. 2011;25:192–200.PubMedCrossRefGoogle Scholar
  130. 130.
    Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93:1057–63.PubMedCrossRefGoogle Scholar
  131. 131.
    Garas A, Tóth M, Vargha P, Holló G. Comparison of repeatability of retinal nerve fiber layer thickness measurement made using the RTVue fourier-domain optical coherence tomograph and the GDx scanning laser polarimeter with variable or enhanced corneal compensation. J Glaucoma. 2010;19:412–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Savini G, Carbonelli M, Parisi V, Barboni P. Effect of pupil dilation on retinal nerve fibre layer thickness measurements and their repeatability with Cirrus HD-OCT. Eye. 2010;24:1503–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Wu H, De Boer JF, Chen TC. Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma. 2011;20:470–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;1174:738–46.CrossRefGoogle Scholar
  135. 135.
    Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51:5724–30.PubMedCrossRefGoogle Scholar
  136. 136.
    Savini G, Carbonelli M, Parisi V, Barboni P. Repeatability of optic nerve head parameters measured by spectral-domain OCT in healthy eyes. Ophthalmic Surg Lasers Imaging. 2011;42:209–15.PubMedCrossRefGoogle Scholar
  137. 137.
    Garcia-Martin E, Pinilla I, Idoipe M, Fuertes I, Pueyo V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT. Acta Ophthalmol. 2011;89:e23–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Garcia-Martin E, Pueyo V, Pinilla I, Ara JR, Martin J, Fernandez J. Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest Ophthalmol Vis Sci. 2011;52:4127–31.CrossRefGoogle Scholar
  139. 139.
    Carpineto P, Nubile M, Agnifili L, Toto L, Aharrh-Gnama A, Masrtropasqua R, et al. Reproducibility and repeatability of Cirrus™ HD-OCT peripapillary retinal nerve fibre layer thickness measurements in young normal subjects. Ophthalmologica. 2012;227:139–45.PubMedCrossRefGoogle Scholar
  140. 140.
    Langenegger SJ, Funk J, Töteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci. 2011;52:3338–44.PubMedCrossRefGoogle Scholar
  141. 141.
    Tan BB, Natividad M, Chua KC, Yip LW. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma. 2012;21:266–73.PubMedCrossRefGoogle Scholar
  142. 142.
    Serbecic N, Beutelspacher SC, Aboul-Enein FC, Kircher K, Reitner A, Schmidt-Erfurth U. Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol. 2011;95:804–10.PubMedCrossRefGoogle Scholar
  143. 143.
    González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with stratus optical coherence tomography measurements. Am J Ophthalmol. 2009;147:1067–74.PubMedCrossRefGoogle Scholar
  144. 144.
    Menke MN, Knecht P, Sturm V, Dabov S, Funk J. Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49:5386–91.PubMedCrossRefGoogle Scholar
  145. 145.
    Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Lee SH, Kim SH, Kim TW, Park KH, Kim DM. Reproducibility of retinal nerve fiber thickness measurements using the test–retest function of spectral OCT/SLO in normal and glaucomatous eyes. J Glaucoma. 2010;19:637–42.PubMedCrossRefGoogle Scholar
  147. 147.
    Hong JT, Sung KR, Cho JW, Yun S-C, Kang SY, Kook MS. Retinal nerve fiber layer measurement variability with spectral domain optical coherence tomography. Korean J Ophthalmol. 2012;26:32–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Mansoori T, Viswanath K, Balakrishna N. Reproducibility of peripapillary retinal nerve fiber layer thickness measurements with spectral domain optical coherence tomography in normal and glaucomatous eyes. Br J Ophthalmol. 2011;95:685–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Sharma A, Oakley JD, Schiffman JC, Budenz DL, Anderson DR. Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc. Ophthalmology. 2011;118:1348–57.PubMedCrossRefGoogle Scholar
  150. 150.
    Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CYL, et al. Evaluation of retinal nerve fiber layer progression in glaucoma. A prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Leung CK, Cheung CYL, Weinreb RN, Liu S, Ye C, Lai G, et al. Evaluation of retinal nerve fiber layer progression in glaucoma. A comparison between the fast and the regular retinal nerve fiber layer scans. Ophthalmology. 2011;118:763–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Invest Ophthalmol Vis Sci. 2011;52:1138–44.PubMedCrossRefGoogle Scholar
  153. 153.
    Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.PubMedCrossRefGoogle Scholar
  154. 154.
    Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R Jr, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, et al. Evaluation of retinal nerve fiber layer progression in glaucoma. A comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.PubMedCrossRefGoogle Scholar
  156. 156.
    Palvin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97:244–50.Google Scholar
  157. 157.
    Tello C, Liebmann J, Potash SD, Cohen H, Robert R. Measurement of ultrasound biomicroscopy images: intraobserver and interobserver reliability. Invest Ophthalmol Vis Sci. 1994;35:3549–52.PubMedGoogle Scholar
  158. 158.
    Henzan IM, Tomidokoro A, Uejo C, Sakai H, Sawaguchi S, Iwase A, et al. Comparison of ultrasound biomicroscopic configurations among primary angle closure, its suspects, and nonoccludable angles: the Kumejima Study. Am J Ophthalmol. 2011;151:1065–73.PubMedCrossRefGoogle Scholar
  159. 159.
    Yokoyama S, Kojima T, Horai R, Ito M, Nakamura T, Ichikawa K. Repeatability of the ciliary sulcus-to-sulcus diameter measurement using wide-scanning-field ultrasound biomicroscopy. J Cataract Refract Sur. 2011;37:1251–6.CrossRefGoogle Scholar
  160. 160.
    Goldsmith JA, Li Y, Chalita MR, Westphal V, Patil CA, Rollins AM, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology. 2005;112:238–44.PubMedCrossRefGoogle Scholar
  161. 161.
    Müller M, Dahmen G, Pörksen E, Geerling G, Laqua H, Ziegler A, et al. Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg. 2006;32:1803–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Li H, Liung CKS, Cheung CYL, Wong L, Pang CP, Neal R, et al. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91:1490–2.PubMedCrossRefGoogle Scholar
  163. 163.
    Radhakrishnan S, See J, Smith SD, Nolan WP, Ce Z, Fridman DS, et al. Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:3683–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Fukuda S, Kawana K, Yasuno Y, Oshika T. Repeatability and reproducibility of anterior ocular biometric measurements with 2-dimensional and 3-dimensional optical coherence tomography. J Cataract Refract Surg. 2010;36:1867–73.PubMedCrossRefGoogle Scholar
  165. 165.
    Tan AN, Sauren LDC, de Brabander J, Berendschot TTJM, Passos VL, Webers CAB, et al. Reproducibility of anterior chamber angle measurements with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:2095–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Kim DY, Sung KR, Kang SY, Cho JW, Lee KS, Park SB, et al. Characteristics and reproducibility of anterior chamber angle assessment by anterior-segment optical coherence tomography. Acta Ophthalmol. 2011;89:435–41.PubMedCrossRefGoogle Scholar
  167. 167.
    Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 1007;26:688–710.CrossRefGoogle Scholar
  168. 168.
    Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology. 1994;101:1455–55.Google Scholar
  169. 169.
    Katz J. Scoring systems for measuring progression of visual field loss in clinical trials of glaucoma treatment. Ophthalmology. 1999;106:391–5.PubMedCrossRefGoogle Scholar
  170. 170.
    Heijl A, Leska MC, Bengtsson B, Bengtsson B, Hussein M, the EMGT Group. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol. 2003;81:286–93.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2012

Authors and Affiliations

  1. 1.Kanto Central Hospital of The Mutual Aid Association of Public School TeachersTokyoJapan

Personalised recommendations