Skip to main content

Advertisement

Log in

Foveal sparing in patients with Japanese Stargardt’s disease and good visual acuity

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Patients with Stargardt’s disease usually have a poor visual prognosis. However, in our clinical practice we have observed some patients with dark-red foveal pigmentation (sparing) who had good best corrected visual acuity (BCVA) despite the presence of a late-stage disease. The purpose of this study was to investigate the BCVA outcomes in Japanese patients with Stargardt’s disease with foveal sparing.

Methods

Eighteen consecutive patients (36 eyes) with Stargardt’s disease underwent ophthalmoscopy, fluorescein angiography, fundus autofluorescence imaging, and near-infrared fundus autofluorescence (NIA) imaging. The patients were divided into two groups based on the presence or absence of foveal sparing. The presence of foveal sparing was determined based on ophthalmoscopy and NIA imaging results. The association between foveal sparing and BCVA was assessed statistically by Students’ t test.

Results

Of the 36 eyes, ten (27.8 %) had dark-red foveal sparing. The mean BCVA of the group with sparing was 0.16 ± 0.31, expressed in logarithm of the minimum angle of resolution (logMAR) units, and that of the group without sparing was 1.03 ± 0.39 logMAR units, which is a significant difference (p = 0.0000002507).

Conclusion

A subgroup of Japanese patients with late-stage Stargardt’s disease and dark-red foveal sparing maintained a relatively good BCVA. The pigmentation was clearly observed using NIA and proved useful for assessing the BCVA prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stargardt K. Über familiäre, progressive degeneration in der maculagegend des auges. Albrecht von Graefe Archiv für Ophthalmologie. 1909;71:534–50.

    Google Scholar 

  2. Jimenez-Sierra JM, Ogden TE, Van Boemel GB. Inherited retinal diseases: a diagnostic guide. St Louis: Mosby; 1989.

    Google Scholar 

  3. Hadden OB, Gass DM. Fundus flavimaculatus and Stargardt’s disease. Am J Ophthalmol. 1976;82:527–39.

    PubMed  CAS  Google Scholar 

  4. Noble KG, Carr RE. Stargardt’s disease and fundus flavimaculatus. Arch Ophthalmol. 1979;97:1281–5.

    Article  PubMed  CAS  Google Scholar 

  5. Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease. Ophthalmology. 2003;110:1151–8.

    Article  PubMed  Google Scholar 

  6. Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556–64.

    Article  PubMed  Google Scholar 

  7. Gass JD. Stereoscopic atlas of macular diseases: diagnosis and treatment. 4th ed. St Louis: Mosby; 1997.

    Google Scholar 

  8. Deutman AF, Hoyng CB, Lith-Verhoeven JC. Macular Dystrophies. In: Ryan S, editor. Retina. 4th ed. Philadelphia: Mosby Elsevier; 2006. p. 1171–5.

    Google Scholar 

  9. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277:1805–7.

    Article  PubMed  CAS  Google Scholar 

  10. Klevering BJ, Deutman AF, Maugeri A, Cremers FP, Hoyng CB. The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefes Arch Clin Exp Ophthalmol. 2005;243:90–100.

    Article  PubMed  CAS  Google Scholar 

  11. Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, et al. The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vis Res. 1999;39:2537–44.

    Article  PubMed  CAS  Google Scholar 

  12. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;17:122.

    PubMed  CAS  Google Scholar 

  13. Hubbard AF, Askew EW, Singh N, Leppert M, Bernstein PS. Association of adipose and red blood cell lipids with severity of dominant Stargardt macular dystrophy (STGD3) secondary to an ELOVL4 mutation. Arch Ophthal. 2006;124:257–63.

    Article  PubMed  CAS  Google Scholar 

  14. Nishiguchi KM, Sandberg MA, Gorji N, Berson EL, Dryja TP. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat. 2005;25:248–58.

    Article  PubMed  CAS  Google Scholar 

  15. Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest. 2008;118:2908–16.

    Article  PubMed  CAS  Google Scholar 

  16. Molday RS, Zhong M, Quazi F. The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta. 2009;1791:573–83.

    Article  PubMed  CAS  Google Scholar 

  17. Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem. 2000;275:29354–60.

    Article  PubMed  CAS  Google Scholar 

  18. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci. 1999;40:2988–95.

    PubMed  CAS  Google Scholar 

  19. Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, et al. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem. 2003;278:18207–13.

    Article  PubMed  CAS  Google Scholar 

  20. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36:718–29.

    PubMed  CAS  Google Scholar 

  21. Smith-Thomas L, Richardson P, Thody AJ, Graham A, Palmer I, Flemming L, et al. Human ocular melanocytes and retinal pigment epithelial cells differ in their melanogenic properties in vivo and in vitro. Curr Eye Res. 1996;15:1079–91.

    Article  PubMed  CAS  Google Scholar 

  22. Peters S, Kayatz P, Heimann K, Schraermeyer U. Subretinal injection of rod outer segments leads to an increase in the number of early-stage melanosomes in retinal pigment epithelial cells. Ophthalmic Res. 2000;32:52–6.

    Article  PubMed  CAS  Google Scholar 

  23. Weinberger AW, Lappas A, Kirschkamp T, Mazinani BA, Huth JK, Mohammadi B, et al. Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Invest Ophthalmol Vis Sci. 2006;47:3098–108.

    Article  PubMed  Google Scholar 

  24. Kellner S, Kellner U, Weber BH, Fiebig B, Weinitz S, Ruether K. Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies. Am J Ophthalmol. 2009;147:895–902.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (to M.T.) and by a Grant-in-Aid from the Ministry of Health, Labour and Welfare (to M. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motokazu Tsujikawa.

Electronic supplementary material

About this article

Cite this article

Nakao, T., Tsujikawa, M., Sawa, M. et al. Foveal sparing in patients with Japanese Stargardt’s disease and good visual acuity. Jpn J Ophthalmol 56, 584–588 (2012). https://doi.org/10.1007/s10384-012-0172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0172-1

Keywords

Navigation