Skip to main content

Advertisement

Log in

Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To measure the peripapillary retinal nerve fiber layer (RNFL) thickness in normal schoolchildren with spectral domain optical coherence tomography (SD-OCT), and to evaluate the effects of age, spherical equivalent (SE) refraction, OCT signal strength, and cycloplegic treatment on RNFL thickness.

Methods

Comprehensive ophthalmic examinations were performed at a school visit. RNFL thicknesses were measured with RTVue-100 OCT. Refractive errors were measured by cycloplegic autorefraction.

Results

Four hundred seventy healthy schoolchildren aged 7 and 12 were enrolled. The average RNFL thickness (mean ± SD) was 109.4 ± 10.0 μm. The quadrant RNFL thicknesses were 90.4 ± 14.3 μm (temporal), 142.2 ± 19.5 μm (inferior), 71.1 ± 11.3 μm (nasal), and 133.9 ± 18.1 μm (superior). After controlling for age, gender, cycloplegic treatment, and signal strength index, multiple linear regression analysis disclosed that only SE refraction has a significant effect on RNFL thickness, (p < 0.001). For every diopter change towards hyperopia, the average RNFL thickness increased by 1.7 μm. SE refraction was positively correlated with RNFL thickness in most sectors of nontemporal quadrants, but it was negatively correlated with RNFL thickness in sectors of temporal quadrants.

Conclusions

Our study provides reference values of pediatric RNFL thickness measured with SD-OCT. SE refraction is the only significant predictor of RNFL thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005;139:509–17.

    Article  PubMed  Google Scholar 

  2. Wang XY, Huynh SC, Burlutsky G, Ip J, Stapleton F, Mitchell P. Reproducibility of an effect of magnification on optical coherence tomography measurements in children. Am J Ophthalmol. 2007;143:484–8.

    Google Scholar 

  3. Ahn HC, Son HW, Kim JS, Lee JH. Quantitative analysis of retinal nerve fiber layer thickness of normal children and adolescents. Korean J Ophthalmol. 2005;19:195–200.

    Article  PubMed  Google Scholar 

  4. Kee SY, Lee SY, Lee YC. Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol. 2006;20:177–81.

    Article  PubMed  Google Scholar 

  5. Salchow DJ, Oleynikov YS, Chiang MF, Kennedy-Salchow SE, Langton K, Tsai JC, et al. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography. Ophthalmology. 2006;113:786–91.

    Article  PubMed  Google Scholar 

  6. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Peripapillary retinal nerve fiber layer thickness in a population of 6-year-old children: findings by optical coherence tomography. Ophthalmology. 2006;113:1583–92.

    Article  PubMed  Google Scholar 

  7. Huynh SC, Wang XY, Burlutsky G, Rochtchina E, Stapleton F, Mitchell P. Retinal and optic disc findings in adolescence: a population-based OCT study. Invest Ophthalmol Vis Sci. 2008;49:4328–35.

    Article  PubMed  Google Scholar 

  8. El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol. 2009;127:50–8.

    Article  PubMed  Google Scholar 

  9. Leung MM, Huang RY, Lam AK. Retinal nerve fiber layer thickness in normal Hong Kong Chinese children measured with optical coherence tomography. J Glaucoma. 2010;19:95–9.

    PubMed  Google Scholar 

  10. Samarawickrama C, Wang JJ, Huynh SC, Pai A, Burlutsky G, Rose KA, et al. Ethnic differences in optic nerve head and retinal nerve fibre layer thickness parameters in children. Br J Ophthalmol. 2010;94:871–6.

    Article  PubMed  Google Scholar 

  11. Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier-domain vs. time-domain optical coherence tomography. Opt Express. 2003;11:889–94.

    Article  PubMed  CAS  Google Scholar 

  12. Johnson DE, El-Defrawy SR, Almeida DR, Campbell RJ. Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems. Can J Ophthalmol. 2009;44:562–6.

    Article  PubMed  Google Scholar 

  13. González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol. 2009;147:1067–74.

    Article  PubMed  Google Scholar 

  14. Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2010;150:807–14.

    Article  PubMed  Google Scholar 

  15. Hong S, Kim CY, Lee WS, Seong GJ. Reproducibility of peripapillary retinal nerve fiber layer thickness with spectral domain cirrus high-definition optical coherence tomography in normal eyes. Jpn J Ophthalmol. 2010;54:43–7.

    Article  PubMed  Google Scholar 

  16. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007;114:1046–52.

    Article  PubMed  Google Scholar 

  17. Varma R, Bazzaz S, Lai M. Optical tomography-measured retinal nerve fiber layer thickness in normal Latinos. Invest Ophthalmol Vis Sci. 2003;44:3369–73.

    Article  PubMed  Google Scholar 

  18. Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci. 1988;29:1151–8.

    PubMed  CAS  Google Scholar 

  19. Harizman N, Oliveira C, Chiang A, Tello C, Marmor M, Ritch R, et al. The ISNT rule and differentiation of normal from glaucomatous eyes. Arch Ophthalmol. 2006;124:1579–83.

    Article  PubMed  Google Scholar 

  20. Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, et al. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006;47:5171–6.

    Article  PubMed  Google Scholar 

  21. Shih YF, Hsiao CK, Chen CJ, Chang CW, Hung PT, Lin LL. An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression. Acta Ophthalmol Scand. 2001;79:233–6.

    Article  PubMed  CAS  Google Scholar 

  22. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina. 2003;23:177–82.

    Article  PubMed  Google Scholar 

  23. Nagai-Kusuhara A, Nakamura M, Fujioka M, Tatsumi Y, Negi A. Association of retinal nerve fiber layer thickness measured by confocal scanning laser ophthalmoscopy and optical coherence tomography with disc size and axial length. Br J Ophthalmol. 2008;92:186–90.

    Article  PubMed  CAS  Google Scholar 

  24. Tariq YM, Samarawickrama C, Pai A, Burlutsky G, Mitchell P. Impact of ethnicity on the correlation of retinal parameters with axial length. Invest Ophthalmol Vis Sci. 2010;51:4977–82.

    Article  PubMed  Google Scholar 

  25. Kim MJ, Lee EJ, Kim TW. Peripapillary retinal nerve fibre layer thickness profile in subjects with myopia measured using the Stratus optical coherence tomography. Br J Ophthalmol. 2010;94:115–20.

    Article  PubMed  CAS  Google Scholar 

  26. Hirasawa H, Tomidokoro A, Araie M, Konno S, Saito H, Iwase A, et al. Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol. 2010;128:1420–6.

    Article  PubMed  Google Scholar 

  27. Kanno M, Nagasawa M, Suzuki M, Yamashita H. Peripapillary retinal nerve fiber layer thickness in normal Japanese eyes measured with optical coherence tomography. Jpn J Ophthalmol. 2010;54:36–42.

    Article  PubMed  Google Scholar 

  28. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

    Article  PubMed  CAS  Google Scholar 

  29. Cheung CY, Leung CK, Lin D, Pang CP, Lam DS. Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology. 2008;115:1347–51.

    Article  PubMed  Google Scholar 

  30. Samarawickrama C, Pai A, Huynh SC, Burlutsky G, Wong TY, Mitchell P. Influence of OCT signal strength on macular, optic nerve head, and retinal nerve fiber layer parameters. Invest Ophthalmol Vis Sci. 2010;51:4471–5.

    Article  PubMed  Google Scholar 

  31. Shin CJ, Sung KR, Um TW, Kim YJ, Kang SY, Cho JW, et al. Comparison of retinal nerve fibre layer thickness measurements calculated by the optic nerve head map (NHM4) and RNFL3.45 modes of spectral-domain optical coherence tomography (RTVue-100). Br J Ophthalmol. 2010;94:763–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Yang-Ming University Hospital (grant no.: RD2009-026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pesus Chou.

About this article

Cite this article

Tsai, DC., Huang, N., Hwu, JJ. et al. Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography. Jpn J Ophthalmol 56, 362–370 (2012). https://doi.org/10.1007/s10384-012-0142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0142-7

Keywords

Navigation