Skip to main content


Log in

Comparison of the anterior ocular segment measurements using swept-source optical coherent tomography and a scanning peripheral anterior chamber depth analyzer

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript



To compare the anterior ocular segment measurements of two non-contact devices, i.e., anterior segment swept-source optical coherence tomography (SS-OCT) and the scanning peripheral anterior chamber depth analyzer (SPAC), in patients with glaucoma.

Patients and methods

This was a cross-sectional study of glaucoma patients visiting the Yamanashi University Hospital. The consistency and correlation of various parameters were studied between the SS-OCT and SPAC measurements, including the central corneal thickness (CCT), the central anterior chamber depth (ACD), the trabecular–iris angle (TIA), the angle opening distance (AOD), the area of the recessed angle (ARA), and the trabecular–iris space area (TISA) from the SS-OCT measurements, and the CCT, central ACD, SPAC grade, and SPAC-evaluated anterior chamber angle (ACA) from the SPAC measurements.


Seventy right eyes of 70 patients (27 men, 43 women) with glaucoma were enrolled in the study. The mean patient age was 65.9 ± 14.5 years. The CCT measurements by SS-OCT and the SPAC were 528.3 ± 32.0 and 516.1 ± 28.5 μm, respectively (P < 0.001). The central ACD measurements by SS-OCT and the SPAC were 2.39 ± 0.44 and 2.73 ± 0.50 mm, respectively (P < 0.001). The two devices showed a significant correlation in terms of the CCT measurements (R 2 = 0.667, P < 0.0001) and the central ACD measurements (R 2 = 0.86, P < 0.0001), but SS-OCT give a significantly shallower central ACD measurement and a thinner CCT measurement compared with the SPAC. AOD, TIA, TISA, and the ARA were all significantly correlated with the SPAC grade and the ACA. Consistency between the two devices was reduced among eyes with primary angle closure.


Based on our results, the SS-OCT and SPAC measurements of the anterior segment were significantly correlated, but the values cannot be considered to be directly interchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Aung T, Nolan WP, Machin D, Seah SK, Baasanhu J, Khaw PT, et al. Anterior chamber depth and the risk of primary angle closure in 2 East Asian populations. Arch Ophthalmol. 2005;123:527–32.

    Article  PubMed  Google Scholar 

  2. Casson RJ, Baker M, Edussuriya K, Senaratne T, Selva D, Sennanayake S. Prevalence and determinants of angle closure in central Sri Lanka: the Kandy Eye Study. Ophthalmology. 2009;116:1444–9.

    Article  PubMed  Google Scholar 

  3. Kurita N, Mayama C, Tomidokoro A, Aihara M, Araie M. Potential of the pentacam in screening for primary angle closure and primary angle closure suspect. J Glaucoma. 2009;18:506–12.

    Article  PubMed  Google Scholar 

  4. Lavanya R, Foster PJ, Sakata LM, Friedman DS, Kashiwagi K, Wong TY, et al. Screening for narrow angles in the singapore population: evaluation of new noncontact screening methods. Ophthalmology. 2008;115:1720–7, 7.e1-2.

    Article  PubMed  Google Scholar 

  5. Kashiwagi K, Abe K, Tsukahara S. Quantitative evaluation of changes in anterior segment biometry by peripheral laser iridotomy using newly developed scanning peripheral anterior chamber depth analyzer. Br J Ophthalmol. 2004;88:1035–40.

    Google Scholar 

  6. Kashiwagi K, Tateno Y, Kashiwagi F, Tsukahara S. Changes in anterior chamber depth due to contusion. Ophthalmic Res. 2009;42:193–8.

    Article  PubMed  Google Scholar 

  7. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98:287–95.

    Article  CAS  PubMed  Google Scholar 

  8. Pavlin CJ, Harasiewicz K, Foster FS. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol. 1992;113:381–9.

    Article  CAS  PubMed  Google Scholar 

  9. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9.

    Article  CAS  PubMed  Google Scholar 

  10. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119:1179–85.

    Article  CAS  PubMed  Google Scholar 

  11. Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123:1053–9.

    Article  PubMed  Google Scholar 

  12. Nolan WP, See JL, Chew PT, Friedman DS, Smith SD, Radhakrishnan S, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology. 2007;114:33–9.

    Article  PubMed  Google Scholar 

  13. Kashiwagi K, Kashiwagi K, Toda Y, Osada K, Tsumura T, Tsukahara S. A newly developed peripheral anterior chamber depth analysis system—principle, accuracy, and reproducibility. Br J Ophthalmol. 2004;88:1029–34.

    Google Scholar 

  14. Kashiwagi K, Shinbayashi E, Tsukahara S. Development of a fully automated peripheral anterior chamber depth analyzer and evaluation of its accuracy. J Glaucoma. 2006;15:388–93.

    Article  PubMed  Google Scholar 

  15. Kashiwagi K, Kashiwagi F, Hiejima Y, Tsukahara S. Finding cases of angle-closure glaucoma in clinic setting using a newly developed instrument. Eye. 2006;20:319–24.

    Article  CAS  PubMed  Google Scholar 

  16. Kashiwagi K, Tsukahara S. Case finding of angle closure glaucoma in public health examination with scanning peripheral anterior chamber depth analyzer. J Glaucoma. 2007;16:589–93.

    Article  PubMed  Google Scholar 

  17. Nissirios N, Ramos-Esteban J, Danias J. Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents. Graefes Arch Clin Exp Ophthalmol. 2005;243:469–73.

    Article  PubMed  Google Scholar 

  18. Shaffer RN. A suggested anatomic classification to define the pupillary block glaucomas. Invest Ophthalmol. 1973;12:540–2.

    CAS  PubMed  Google Scholar 

  19. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.

    PubMed  Google Scholar 

  20. Fu J, Li SN, Wang XZ, Wu GW, Mu DP, Wang J, et al. Measurement of anterior chamber volume with rotating Scheimpflug camera and anterior segment optical coherence tomography. Chin Med J (Engl). 2010;123:203–7.

    Google Scholar 

  21. Leung CK, Li H, Weinreb RN, Liu J, Cheung CY, Lai RY, et al. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci. 2008;49:3469–74.

    Article  PubMed  Google Scholar 

  22. Doors M, Cruysberg LP, Berendschot TT, de Brabander J, Verbakel F, Webers CA, et al. Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation. Graefes Arch Clin Exp Ophthalmol. 2009;247:1139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dinc UA, Oncel B, Gorgun E, Yalvac IS. Assessment of anterior chamber angle using Visante OCT, slit-lamp OCT, and Pentacam. Eur J Ophthalmol. 2009;19(3):411–5

    Article  PubMed  Google Scholar 

  24. Fukuda S, Kawana K, Yasuno Y, Oshika T. Anterior ocular biometry using 3-dimensional optical coherence tomography. Ophthalmology. 2009;116:882–9.

    Article  PubMed  Google Scholar 

  25. Yazici AT, Bozkurt E, Alagoz C, Alagoz N, Pekel G, Kaya V, et al. Central corneal thickness, anterior chamber depth, and pupil diameter measurements using Visante OCT, Orbscan, and Pentacam. J Refract Surg. 2010;26:127–33.

    Article  PubMed  Google Scholar 

  26. Baikoff G, Jitsuo Jodai H, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J Cataract Refract Surg. 2005;31:1722–8.

    Article  PubMed  Google Scholar 

  27. Lavanya R, Teo L, Friedman DS, Aung HT, Baskaran M, Gao H, et al. Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91:1023–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liang J, Liu W, Xing X, Liu H, Zhao S, Ji J. Evaluation of the agreement between Pentacam and ultrasound biomicroscopy measurements of anterior chamber depth in Chinese patients with primary angle-closure glaucoma. Jpn J Ophthalmol. 2010;54:361–2.

    Article  PubMed  Google Scholar 

  29. Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology. 2000;107:2092–6.

    Article  CAS  PubMed  Google Scholar 

  30. Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000;107:2300–4.

    Article  CAS  PubMed  Google Scholar 

  31. Dinc U, Oncel B, Gorgun E, Alimgil L. Quantitative assessment of anterior chamber volume using slit-lamp OCT and Pentacam. Eur J Ophthalmol. 2009;19:411–5.

    Article  PubMed  Google Scholar 

  32. Kim DY, Sung KR, Kang SY, Cho JW, Lee KS, Park SB, et al. Characteristics and reproducibility of anterior chamber angle assessment by anterior-segment optical coherence tomography. Acta Ophthalmol. 2011;89:435–441.

    Article  PubMed  Google Scholar 

  33. Kashiwagi K, Tsumura T, Tsukahara S. Comparison between newly developed scanning peripheral anterior chamber depth analyzer and conventional methods of evaluating anterior chamber configuration. J Glaucoma. 2006;15:380–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kenji Kashiwagi.

Additional information

Proprietary interest: KK has a Japanese patent for the SPAC.

About this article

Cite this article

Furuya, T., Mabuchi, F., Chiba, T. et al. Comparison of the anterior ocular segment measurements using swept-source optical coherent tomography and a scanning peripheral anterior chamber depth analyzer. Jpn J Ophthalmol 55, 472–479 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: