Skip to main content

Advertisement

Log in

Effects of oblique muscle surgery on the rectus muscle pulley

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys.

Methods

Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated.

Results

The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p = 0.0234), but weakly correlated with that of the horizontal rectus muscles.

Conclusions

The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Forbes G, Gehring DG, Gorman CA, Brennan MD, Jackson IT. Volume measurements of normal orbital structures by computed tomographic analysis. Am J Neuroradiol. 1985;6:419–24.

    Google Scholar 

  2. Ozgen A, Ariyurek M. Normative measurements of orbital structure using CT. AJR. 1998;170:1093–6.

    Article  CAS  PubMed  Google Scholar 

  3. Nishida Y, Hayashi O, Nishida E, Murata T, Aoki Y, Inatomi A, et al. Volume measurement of the horizontal extraocular muscles using magnetic resonance imaging. Jpn J Ophthalmol. 1996;40:439–46.

    CAS  PubMed  Google Scholar 

  4. Tian S, Nishida Y, Isberg B, Lennerstrand G. MRI measurements of normal extraocular muscles and other orbital structure. Graefe’s Arch Clin Exp Ophthalmol. 2000;238:393–404.

    Article  CAS  Google Scholar 

  5. Ozgen A, Aydingöz U. Normative measurements of orbital structures using MRI. J Comput Assist Tomogr. 2000;24:493–6.

    Article  CAS  PubMed  Google Scholar 

  6. Iwata-Amano E, Sato M, Ukai K, Terasaki H. Magnetic resonance imaging of the extraocular muscle path before and after strabismus surgery for a large degree of cyclotorsion induced by macular translocation surgery. Jpn J Ophthalmol. 2009;53:131–7.

    Article  Google Scholar 

  7. Miller JM. Functional anatomy of normal human rectus muscles. Vision Res. 1989;29:223–40.

    Article  CAS  PubMed  Google Scholar 

  8. Demer JL, Miller JM, Poukens V, Vinters HV, Glasgow BJ. Evidence for fibromuscular pulleys of the recti extraocular muscles. Invest Ophthalmol Vis Sci. 1995;36:1125–36.

    CAS  PubMed  Google Scholar 

  9. Robinson DA. A quantitative analysis of extraocular muscle cooperation and squint. Invest Ophthalmol Vis Sci. 1975;14:801–25.

    CAS  Google Scholar 

  10. Demer JL, Oh SY, Poukens V. Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci. 2000;41:1280–90.

    CAS  PubMed  Google Scholar 

  11. Demer JL. Pivotal role of orbital connective tissues in binocular alignment and strabismus. The Friedenwald lecture. Invest Ophthalmol Vis Sci. 2004;45:729–38.

    Article  PubMed  Google Scholar 

  12. Demer JL, Miller JM. Orbital imaging in strabismus surgery. In: Rosenbaum AL, Santiago AP, editors. Clinical strabismus management. Philadelphia: Sanders; 1999. p. 84–98.

    Google Scholar 

  13. Clark RA, Miller JM, Demer JL. Location and stability of rectus muscle pulleys inferred from muscle paths. Invest Ophthalmol Vis Sci. 1997;38:227–40.

    CAS  PubMed  Google Scholar 

  14. Clark RA, Miller JM, Demer JL. Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions. Invest Ophthalmol Vis Sci. 2000;41:3787–97.

    CAS  PubMed  Google Scholar 

  15. Kono R, Okanobu H, Ohtsuki H, Furuse T. Findings by magnetic resonance imaging of rectus muscle pulleys in normal persons. Rinsho Ganka (Jpn J Clin Ophthalmol). 2009;63:1537–41.

    Google Scholar 

  16. Kono R, Clark RA, Demer JL. Active pulleys: magnetic resonance imaging of rectus muscle path in tertiary gaze. Invest Ophthalmol Vis Sci. 2002;443:2179–88.

    Google Scholar 

  17. Velez FG, Clark RA, Demer JL. Facial asymmetry in superior muscle palsy and pulley heterotopy. J AAPOS. 2004;4:233–9.

    Article  Google Scholar 

  18. Hisatomi C. The Eyelid. In: Manabe R, editor. New clinical Ophthalmology Shin Rinshogankazensho Geganb, Zenganbu 6A (in Japanese). Tokyo: Kanehara; 1993. p. 1–13.

    Google Scholar 

  19. Tane F. Orbital disease, Ocular misalignment. In: Manabe R, editor. New clinical Ophthalmology Shin Rinshogankazensho Geganb, Zenganbu 6A In Japanese). Tokyo: Kanehara; 1993. p. 273–85.

    Google Scholar 

  20. Clark RA, Rosenbaum AL, Demer JL. Magnetic resonance imaging after surgical transposition defines the anteroposterior location of the rectus muscle pulleys. J AAPOS. 1999;3:9–14.

    Article  CAS  PubMed  Google Scholar 

  21. Clark RA, Demer JL. Rectus extraocular muscle pulley displacement after surgical transposition and posterior fixation for treatment of paralytic strabismus. Am J Ophthalmol. 2002;133:119–28.

    Article  PubMed  Google Scholar 

  22. Demer JL, Miller JM, Poukens V. Surgical implications of the rectus extraocular muscle pulleys. J Pediatr Ophthalmol Strabismus. 1996;33:208–18.

    CAS  PubMed  Google Scholar 

  23. Clark RA, Demer JL. Magnetic resonance imaging of the effect of horizontal rectus extraocular muscle surgery on pulley and globe positions and stability. Invest Ophthalmol Vis Sci. 2006;47:188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kono R, Ohtsuki H, Okanobu H, et al. Displacement of rectus muscle pulleys by torsional muscle surgery for treatment full macular translocation induced-cyclotropia. Am J Ophthalmol. 2005;140:144–6.

    Article  PubMed  Google Scholar 

  25. Wright KW. Inferior oblique muscle surgery. In: Wright KW, editor. Color atlas of ophthalmic surgery. New York: Lippincott; 1991. p. 173–99.

    Google Scholar 

  26. Eckardt C, Eckardt U, Conrad H-G. Macular translocation with and without counter-rotation of the globe in patients with age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol. 1999;237:313–25.

    Article  CAS  Google Scholar 

  27. Fujikado T, Shimojyo H, Hosohata J, Tsujikawa K, Fukui T, Ohji M, et al. Effect of simultaneous oblique muscle surgery in foveal translocation by 360° retinotomy. Graefe’s Arch Clin Exp Ophthalmol. 2002;240:21–30.

    Article  Google Scholar 

  28. Del Monte MA, Wright KW. Superior oblique strengthening procedure. In: Wright KW, editor. Color atlas of ophthalmic surgery. New York: Lippincott; 1991. p. 145–71.

    Google Scholar 

  29. Russmann W, Fricke J, Neugebauer A. Untersuchung der Motorik. Messung der Fehlstellung. In: Kaufmann H, editor. Strabismus. Stuttgart: Thieme; 2004. p. 344–69.

    Google Scholar 

  30. Schworm HD, Eithoff S, Schaumberger M, Boergen KP. Investigation on subjective and objective cyclorotatory changes after inferior oblique muscle recession. Invest Ophthalmol Vis Sci. 1997;38:405–12.

    CAS  PubMed  Google Scholar 

  31. Horikawa A, Hirai Y, Kono R, Hasebe S, Otsuki H. Evaluation of cyclodeviation by scanning laser ophthalmoscope- comparison of subjective and objective cyclodeviation in vertical strabismus. Rinsho Ganka. 2000;54:85–8. (in Japanese).

    Google Scholar 

  32. Bixenman WW, von Noorden GK. Apparent foveal displacement in normal subjects and incyclotropia. Ophthalmology. 1982;89:58–62.

    Article  CAS  PubMed  Google Scholar 

  33. Inatomi A. Studies of cyclodeviation. Nippon Ganka Gakkai Zasshi. 1987;91:1119–36.

    CAS  PubMed  Google Scholar 

  34. Clark RA, Demer JL. Effect of aging on human rectus extraocular muscle paths demonstrated by magnetic resonance imaging. Am J Ophthalmol. 2002;134:872–8.

    Article  PubMed  Google Scholar 

  35. Krzizok TH, Kaufmann H, Traupe H. Elucidation of restrictive motility in high myopia by magnetic resonance imaging. Arch Ophthalmol. 1996;1115:1019–27.

    Google Scholar 

  36. Krzizok TH, Schroeder BU. Measurement of recti eye muscle paths by magnetic resonance imaging in highly myopic and normal subjects. Invest Ophthalmol Vis Sci. 1999;40:2554–60.

    CAS  PubMed  Google Scholar 

  37. Demer JL, Oh SY, Clark RA, Poukens V. Evidence for a pulley of the inferior oblique muscle. Invest Ophthalmol Vis Sci. 2003;44:3856–65.

    Article  PubMed  Google Scholar 

  38. Kono R, Poukens V, Demer JL. Superior oblique muscle layers in monkeys and humans. Invest Ophthalmol Vis Sci. 2005;46:2790–9.

    Article  PubMed  Google Scholar 

  39. Demer JL, Clark RA. Magnetic resonance imaging of human extraocular muscle during static ocular counterrolling. J Neurophysiol. 2005;94:3292–302.

    Article  PubMed  Google Scholar 

  40. Oh SY, Poukens V, Demer JL. Quantitative analysis of extraocular muscle global and orbital layers in monkey and human. Invest Ophthalmol Vis Sci. 2001;42:10–6.

    CAS  PubMed  Google Scholar 

  41. Demer JL. Current concepts of mechanical and neural factors in ocular motility. Curr Opin Neurol. 2006;19:4–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid (20592044 and 22591964) from the Ministry of Education, Science, Sports, and Culture of Japan in Japan. The authors thank Kazushi Kinugasa, Director of the National Agency for Automotive Safety and Victims’ Aid, Okayama Ryogo Center, Okayama, Japan, who provided the MRI facility and equipment. We express our deep gratitude to Professor Joseph L. Demer of the Jules Stein Eye Institute, University of California, Los Angeles, USA, for valuable advice and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reika Kono.

About this article

Cite this article

Okanobu, H., Kono, R. & Ohtsuki, H. Effects of oblique muscle surgery on the rectus muscle pulley. Jpn J Ophthalmol 55, 514–524 (2011). https://doi.org/10.1007/s10384-011-0051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-011-0051-1

Keywords

Navigation