Skip to main content

Advertisement

Log in

Influence of angular width and peripapillary position of localized retinal nerve fiber layer defects on their detection by time-domain optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of angular width and peripapillary position of localized retinal nerve fiber layer (RNFL) defects on their detection by the time-domain optical coherence tomography (OCT).

Methods

Fast RNFL Stratus OCT scans were obtained from 186 eyes of 186 newly detected glaucoma patients with only a single, localized RNFL defect in either eye. The RNFL defects were divided into subgroups according to their angular width at 15° intervals and superior or inferior position. In the sector average graph of OCT results, abnormal clock-hour sectors were evaluated at P < 5%.

Results

Among 154 eyes included in the final data analysis, mean angular width of localized RNFL defects was 21.82 ± 10.38°, and 108 eyes (70.1%) had an inferiorly located RNFL defect. Localized RNFL defects with an angular width interval of 30° to 45° were more frequently detected by Stratus OCT than those with an angular width of <15° (odds ratio = 30.32, P = 0.001). Inferior RNFL defects were not detected more frequently by Stratus OCT than superior RNFL defects (odds ratio = 1.58, P = 0.24).

Conclusions

Only the angular width of localized RNFL defects had a significant influence on the sensitivity of the time-domain OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 1995;36:200–205.

    PubMed  CAS  Google Scholar 

  2. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991;109:77–83.

    PubMed  CAS  Google Scholar 

  3. Jonas JB, Dichtl A. Evaluation of the retinal nerve fiber layer. Surv Ophthalmol 1996;40:369–378.

    Article  PubMed  CAS  Google Scholar 

  4. Airaksinen PJ, Nieminen H. Retinal nerve fiber layer photography in glaucoma. Ophthalmology 1985;92:877–879.

    PubMed  CAS  Google Scholar 

  5. Han ES, Park KH. Using red-free monochromatic conversions of nonmydriatic digital fundus images. Am J Ophthalmol 2007;143:371–372.

    Article  PubMed  Google Scholar 

  6. Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103:1889–1898.

    PubMed  CAS  Google Scholar 

  7. Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005;112:3–9.

    Article  PubMed  Google Scholar 

  8. Yoo YC, Park KH. Comparison of optical coherence tomography and scanning laser polarimetry for detection of localized retinal nerve fiber layer defects. J Glaucoma 2010;19:229–236.

    Article  PubMed  Google Scholar 

  9. Jeoung JW, Park KH, Kim TW, Khwarg SI, Kim DM. Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects. Ophthalmology 2005;112:2157–2163.

    Article  PubMed  Google Scholar 

  10. Hwang JM, Kim TW, Park KH, Kim DM, Kim H. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and redfree fundus photography. J Glaucoma 2006;15:223–228.

    Article  PubMed  Google Scholar 

  11. Anderson DR, Patella VM. Interpretation of a single field. In: Anderson DR, Patella VM, editors. Automated static perimetry. St. Louis: Mosby; 1999. p. 143–164.

    Google Scholar 

  12. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  13. Jonas JB, Schiro D. Localised wedge shaped defects of the retinal nerve fibre layer in glaucoma. Br J Ophthalmol 1994;78:285–290.

    Article  PubMed  CAS  Google Scholar 

  14. Kim TW, Park UC, Park KH, Kim DM. Ability of stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. Invest Ophthalmol Vis Sci 2007;48:1635–1641.

    Article  PubMed  Google Scholar 

  15. Hougaard JL, Heijl A, Bengtsson B. Glaucoma detection by stratus OCT. J Glaucoma 2007;16:302–306.

    Article  PubMed  Google Scholar 

  16. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004;122:827–837.

    Article  PubMed  Google Scholar 

  17. Leung CK, Chan WM, Chong KK, et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, I: Correlation analysis in glaucoma. Invest Ophthalmol Vis Sci 2005;46:3214–3220.

    Article  PubMed  Google Scholar 

  18. Parikh RS, Parikh S, Sekhar GC, et al. Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. Ophthalmology 2007;114:2238–2243.

    Article  PubMed  Google Scholar 

  19. Quigley HA, Reacher M, Katz J, Strahlman E, Gilbert D, Scott R. Quantitative grading of nerve fiber layer photographs. Ophthalmology 1993;100:1800–1807.

    PubMed  CAS  Google Scholar 

  20. Budenz DL, Anderson DR, Varma R, et al. Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology 2007;114:1046–1052.

    Article  PubMed  Google Scholar 

  21. Savini G, Barboni P, Carbonelli M, Zanini M. The effect of scan diameter on retinal nerve fiber layer thickness measurement using stratus optic coherence tomography. Arch Ophthalmol 2007;125:901–905.

    Article  PubMed  Google Scholar 

  22. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 2009;18:501–505.

    Article  PubMed  Google Scholar 

  23. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586–596.

    PubMed  CAS  Google Scholar 

  24. Soliman MA, Van Den Berg TJ, Ismaeil AA, De Jong LA, De Smet MD. Retinal nerve fiber layer analysis: Relationship between optical coherence tomography and red-free photography. Am J Ophthalmol 2002;133:187–195.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Cheol Yoo.

About this article

Cite this article

Yoo, Y.C., Park, K.H. Influence of angular width and peripapillary position of localized retinal nerve fiber layer defects on their detection by time-domain optical coherence tomography. Jpn J Ophthalmol 55, 115–122 (2011). https://doi.org/10.1007/s10384-010-0919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-010-0919-5

Keywords

Navigation