Skip to main content

Advertisement

Log in

Wound healing fibroblasts modulate corneal angiogenic privilege: Interplay of basic fibroblast growth factor and matrix metalloproteinases in corneal angiogenesis

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2006;104:264–302.

    PubMed  Google Scholar 

  2. Onguchi T, Han KY, Chang JH, Azar DT. Membrane type-1 matrix metalloproteinase potentiates basic fibroblast growth factorinduced corneal neovascularization. Am J Pathol 2009;174:1564–1571.

    Article  CAS  PubMed  Google Scholar 

  3. Ambati BK, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 2006;443:993–997.

    Article  CAS  PubMed  Google Scholar 

  4. Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy 2007;92:50–57.

    Article  CAS  PubMed  Google Scholar 

  5. Chang JH, Javier JA, Chang GY, Oliveira HB, Azar DT. Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Lett 2005;579:3601–3606.

    Article  CAS  PubMed  Google Scholar 

  6. Gabison E, Chang JH, Hernandez-Quintela E, et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res 2004;78:579–589.

    Article  CAS  PubMed  Google Scholar 

  7. Albuquerque RJ, Hayashi T, Cho WG, et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 2009;15:1023–1030.

    Article  CAS  PubMed  Google Scholar 

  8. Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol 2001;12:242–249.

    Article  CAS  PubMed  Google Scholar 

  9. Darland DC, D’Amore PA. Cell-cell interactions in vascular development. Current Top Dev Biol 2001;52:107–149.

    Article  CAS  Google Scholar 

  10. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 2003;264:275–288.

    Article  CAS  PubMed  Google Scholar 

  11. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 2008;237:18–27.

    Article  CAS  PubMed  Google Scholar 

  12. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000;7:165–197.

    Article  CAS  PubMed  Google Scholar 

  13. Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 1994;8:3045–3057.

    Article  CAS  PubMed  Google Scholar 

  14. Xu X, Weinstein M, Li C, et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development (Cambridge, England) 1998;125:753–765.

    CAS  Google Scholar 

  15. Auguste P, Gursel DB, Lemiere S, et al. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesisdependent and -independent mechanisms. Cancer Res 2001;61:1717–1726.

    CAS  PubMed  Google Scholar 

  16. Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 2009;458:651–654.

    Article  CAS  PubMed  Google Scholar 

  17. Gabison EE, Huet E, Baudouin C, Menashi S. Direct epithelial-stromal interaction in corneal wound healing: role of EMMPRIN/CD147 in MMPs induction and beyond. Prog Retin Eye Res 2009;28:19–33.

    Article  CAS  PubMed  Google Scholar 

  18. Watson SL, Secker GA, Daniels JT. The effect of therapeutic human serum drops on corneal stromal wound-healing activity. Curr Eye Res 2008;33:641–652.

    Article  CAS  PubMed  Google Scholar 

  19. Kato T, Kure T, Chang JH, et al. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett 2001;508:187–190.

    Article  CAS  PubMed  Google Scholar 

  20. Ye HQ, Azar DT. Expression of gelatinases A and B, and TIMPs 1 and 2 during corneal wound healing. Invest Ophthalmol Vis Sci 1998;39:913–921.

    CAS  PubMed  Google Scholar 

  21. Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 2000;97:4052–4057.

    Article  CAS  PubMed  Google Scholar 

  22. Azar DT, Casanova FH, Mimura T, Jain S, Chang JH. Effect of MT1-MMP deficiency and overexpression in corneal keratocytes on vascular endothelial cell migration and proliferation. Curr Eye Res 2008;33:954–962.

    Article  CAS  PubMed  Google Scholar 

  23. Ito TK, Ishii G, Saito S, et al. Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood 2009;113:2363–2369.

    Article  CAS  PubMed  Google Scholar 

  24. Samolov B, Steen B, Seregard S, van der Ploeg I, Montan P, Kvanta A. Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res 2005;80:159–166.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 2002;43:955–962.

    PubMed  Google Scholar 

  26. Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B. Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res 2000;70:419–428.

    Article  CAS  PubMed  Google Scholar 

  27. Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000;151:879–889.

    Article  CAS  PubMed  Google Scholar 

  28. Toschi E, Barillari G, Sgadari C, et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell 2001;12:2934–2946.

    CAS  PubMed  Google Scholar 

  29. Kure T, Chang JH, Kato T, et al. Corneal neovascularization after excimer keratectomy wounds in matrilysin-deficient mice. Invest Ophthalmol Vis Sc 2003;44:137–144.

    Article  Google Scholar 

  30. Mitchell BM, Wu TG, Chong EM, Pate JC, Wilhelmus KR. Expression of matrix metalloproteinases 2 and 9 in experimental corneal injury and fungal keratitis. Cornea 2007;26:589–593.

    PubMed  Google Scholar 

  31. Yamamoto K, Kumagai N, Fukuda K, Fujitsu Y, Nishida T. Activation of corneal fibroblast-derived matrix metalloproteinase-2 by tryptase. Curr Eye Res 2006;31:313–317.

    Article  CAS  PubMed  Google Scholar 

  32. Stetler-Stevenson WG, Seo DW. TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med 2005;11:97–103.

    Article  CAS  PubMed  Google Scholar 

  33. Lu PC, Ye H, Maeda M, Azar DT. Immunolocalization and gene expression of matrilysin during corneal wound healing. Investigative Ophthalmol Vis Sci 1999;40:20–27.

    CAS  Google Scholar 

  34. Seiki M. Membrane-type matrix metalloproteinases. APMIS 1999;107:137–143.

    Article  CAS  PubMed  Google Scholar 

  35. Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994;370:61–65.

    Article  CAS  PubMed  Google Scholar 

  36. Takino T, Sato H, Shinagawa A, Seiki M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 1995;270:23013–23020.

    Article  CAS  PubMed  Google Scholar 

  37. Puente XS, Pendas AM, Llano E, Velasco G, Lopez-Otin C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 1996;56:944–949.

    CAS  PubMed  Google Scholar 

  38. Pei D. Leukolysin/MMP25/MT6-MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res 1999;9:291–303.

    Article  CAS  PubMed  Google Scholar 

  39. Pei D. Identification and characterization of the fifth membranetype matrix metalloproteinase MT5-MMP. J Biol Chem 1999;274:8925–8932.

    Article  CAS  PubMed  Google Scholar 

  40. Ye HQ, Maeda M, Yu FS, Azar DT. Differential expression of MT1-MMP (MMP-14) and collagenase III (MMP-13) genes in normal and wounded rat corneas. Invest Ophthalmol Vis Sci 2000;41:2894–2899.

    CAS  PubMed  Google Scholar 

  41. Genis L, Galvez BG, Gonzalo P, Arroyo AG. MT 1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev 2006;25:77–86.

    Article  PubMed  Google Scholar 

  42. Nishida Y, Miyamori H, Thompson EW, Takino T, Endo Y, Sato H. Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for proMMP-2 generates active MMP-2. Cancer Res 2008;68:9096–9104.

    Article  CAS  PubMed  Google Scholar 

  43. Basile JR, Holmbeck K, Bugge TH, Gutkind JS. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J Biol Chem 2007;282:6899–6905.

    Article  CAS  PubMed  Google Scholar 

  44. Figueira RC, Gomes LR, Neto JS, Silva FC, Silva ID, Sogayar MC. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer 2009;9:20.

    Article  PubMed  Google Scholar 

  45. Azar DT, Casanova FH, Mimura T, Jain S, Han KY, Chang JH. Corneal epithelial MT1-MMP inhibits vascular endothelial cell proliferation and migration. Cornea 2010;29:321–330.

    Article  PubMed  Google Scholar 

  46. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sc 2000;41:2514–2522.

    CAS  Google Scholar 

  47. Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M. Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer 2003;106:848–855.

    Article  CAS  PubMed  Google Scholar 

  48. Sounni NE, Roghi C, Chabottaux V, et al. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J Biol Chem 2004;279:13564–13574.

    Article  CAS  PubMed  Google Scholar 

  49. Tong S, Yuan F. Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: I. Experimental characterizations. Microvasc Res 2008;75:10–15.

    Article  CAS  PubMed  Google Scholar 

  50. Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 2008;15:215–220.

    Article  CAS  PubMed  Google Scholar 

  51. Hagino S, Iseki K, Mori T, et al. Expression pattern of glypican-1 mRNA after brain injury in mice. Neurosci Lett 2003;349:29–32.

    Article  CAS  PubMed  Google Scholar 

  52. Buckley CD, Rainger GE, Nash GB, Raza K. Endothelial cells, fibroblasts and vasculitis. Rheumatology (Oxford, England) 2005;44:860–863.

    Article  CAS  Google Scholar 

  53. Udayakumar TS, Nagle RB, Bowden GT. Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line. Prostate 2004;58:66–75.

    Article  CAS  PubMed  Google Scholar 

  54. Nomura S, Yoshitomi H, Takano S, et al. FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. Br J Cancer 2008;99:305–313.

    Article  CAS  PubMed  Google Scholar 

  55. Mimura T, Han KY, Onguchi T, et al. MT1-MMP-mediated cleavage of decorin in corneal angiogenesis. J Vasc Res 2009;46:541–550.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri T. Azar.

About this article

Cite this article

Chang, JH., Han, K.Y. & Azar, D.T. Wound healing fibroblasts modulate corneal angiogenic privilege: Interplay of basic fibroblast growth factor and matrix metalloproteinases in corneal angiogenesis. Jpn J Ophthalmol 54, 199–205 (2010). https://doi.org/10.1007/s10384-010-0801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-010-0801-5

Keywords

Navigation