Skip to main content

Advertisement

Log in

Optic disc analysis with Heidelberg Retina Tomography III in glaucoma with unilateral visual field defects

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To find the optic disc features of asymmetric primary open-angle glaucoma.

Methods

In this observational case-control study, 52 consecutive open-angle glaucoma patients with unilateral visual field defects participated. In each patient, an optic disc analysis using Heidelberg Retina Tomography III (HRT-III) was performed. Optic disc parameters of HRT-III of eyes with abnormal visual fields were compared with their fellow eyes with normal visual fields.

Results

The optic disc area of the eyes with abnormal visual fields (2.35 ± 0.55 mm2) was larger than that of the fellow eyes with normal visual fields (2.25 ± 0.43 mm2) (P = 0.03). Of the eyes with abnormal visual fields, 63.5% had a larger optic disc area than their fellow eyes with normal visual fields. In addition, in the eyes with abnormal visual fields, the cup areas were larger (P = 0.000001–0.02), whereas the rim and retinal nerve fiber layer thicknesses were thinner (P = 0.000002–0.036) than those of the fellow eyes with normal visual fields.

Conclusions

The optic disc area of eyes with abnormal visual fields was larger than that of their fellow eyes with normal visual fields, suggesting that Chinese open-angle glaucoma patients with larger optic discs might be susceptible to glaucomatous optic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harbin TS, Podos SM, Kolker AE, Becker B. Visual field progression in open-angle glaucoma patients presenting with monocular field loss. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 1976;81:253–257.

    PubMed  Google Scholar 

  2. Poinoosawmy D, Fontana L, Wu JX, Bunce CW, Hitchings RA. Frequency of asymmetric visual field defects in normal-tension and high-tension glaucoma. Ophthalmology 1998;105:988–991.

    Article  CAS  PubMed  Google Scholar 

  3. Montgomery DM. Clinical disc biometry in early glaucoma. Ophthalmology 1993;100:52–56.

    CAS  PubMed  Google Scholar 

  4. Fontana L, Armas R, Garway-Heath DF, Bunce CV, Poinoosawmy D, Hitchings RA. Clinical factors influencing the visual prognosis of the fellow eyes of normal tension glaucoma patients with unilateral field loss. Br J Ophthalmol 1999;83:1002–1005.

    Article  CAS  PubMed  Google Scholar 

  5. Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007;114:1965–1972.

    Article  PubMed  Google Scholar 

  6. Bengtsson B, Leske MC, Hyman L, Heijl A. Early Manifest Glaucoma Trial Group. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology 2007;114:205–209.

    Article  PubMed  Google Scholar 

  7. Haefliger IO, Hitchings RA. Relationship between asymmetry in visual field defects and intraocular pressure difference in an untreated normal (low) tension glaucoma population. Acta Ophthalmol (Copenh) 1990;68:564–567.

    Article  CAS  Google Scholar 

  8. Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 1997;124:287–295.

    CAS  PubMed  Google Scholar 

  9. Zeitz O, Galambos P, Wagenfeld L, et al. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol 2006;90:1245–1248.

    Article  CAS  PubMed  Google Scholar 

  10. Plange N, Kaup M, Arend O, Remky A. Asymmetric visual field loss and retrobulbar haemodynamics in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2006;244:978–983.

    Article  PubMed  Google Scholar 

  11. Healey PR, Mitchell P. Optic disc size in open-angle glaucoma: The Blue Mountains Eye Study. Am J Ophthalmol 1999;128:515–517.

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Damji KF, Munger R, et al. Increased disc size in glaucomatous eyes vs normal eyes in the Reykjavik Eye Study. Am J Ophthalmol 2003;135:226–228.

    Article  PubMed  Google Scholar 

  13. Burk RO, Rohrschneider K, Noack H, Volcker HE. Are large optic nerve heads susceptible to glaucomatous damage at normal intraocular pressure? A three-dimensional study by laser scanning tomography. Graefes Arch Clin Exp Ophthalmol 1992;230:552–560.

    Article  CAS  PubMed  Google Scholar 

  14. Chi T, Ritch R, Stickler D, Pitman B, Tsai C, Hsieh FY. Racial differences in optic nerve head parameters. Arch Ophthalmol 1989;107:836–839.

    CAS  PubMed  Google Scholar 

  15. Girkin CA, McGwin G Jr, Xie A, Deleon-Ortega J. Differences in optic disc topography between black and white normal subjects. Ophthalmology 2005;112:33–39.

    Article  PubMed  Google Scholar 

  16. Mansour AM. Racial variation of optic disc size. Ophthalmic Res 1991;23:67–72.

    Article  CAS  PubMed  Google Scholar 

  17. Quigley HA, Varma R, Tielsch JM, Katz J, Sommer A, Gilbert DL. The relationship between optic disc area and open-angle glaucoma: The Baltimore Eye Survey. J Glaucoma 1999;8:347–352.

    Article  CAS  PubMed  Google Scholar 

  18. Jonas JB, Xu L, Zhang L, Wang Y, Wang Y. Optic disk size in chronic glaucoma: The Beijing Eye Study. Am J Ophthalmol 2006;142:168–170.

    Article  PubMed  Google Scholar 

  19. Zangwill LM, Weinreb RN, Beiser JA, et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Arch Ophthalmol 2005;123:1188–1197.

    Article  PubMed  Google Scholar 

  20. Jonas JB, Fernandez MC, Naumann GO. Correlation of the optic disc size to glaucoma susceptibility. Ophthalmology 1991;98:675–680.

    CAS  PubMed  Google Scholar 

  21. Gordon MO, Beiser JA, Brandt JD, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:714–720; discussion 829–830.

    PubMed  Google Scholar 

  22. Higginbotham EJ, Gordon MO, Beiser JA, et al. The ocular hypertension treatment study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol 2004;122:813–820.

    Article  PubMed  Google Scholar 

  23. Jonas JB, Schmidt AM, Müller-Bergh JA, Schlötzer-Schrehardt UM, Naumann GO. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 1992;33:2012–2018.

    CAS  PubMed  Google Scholar 

  24. Racette L, Wilson MR, Zangwill LM, Weinreb RN, Sample PA. Primary open-angle glaucoma in blacks: a review. Surv Ophthalmol 2003;48:295–313.

    Article  PubMed  Google Scholar 

  25. Martin MJ, Sommer A, Gold EB, Diamond EL. Race and primary open-angle glaucoma. Am J Ophthalmol 1985;99:383–387.

    CAS  PubMed  Google Scholar 

  26. Robert Y. Biomorphometry of the optic disc. Curr Opin Ophthalmol 1993;4:35–39.

    CAS  PubMed  Google Scholar 

  27. Watkins R, Panchal L, Uddin J, Gunvant P. Vertical cup-to-disc ratio: agreement between direct ophthalmoscopic estimation, fundus biomicroscopic estimation, and scanning laser ophthalmoscopic measurement. Optom Vis Sci 2003;80:454–459.

    Article  PubMed  Google Scholar 

  28. Bass SJ, Sherman J. Optic disc evaluation and utility of high-tech devices in the assessment of glaucoma. Optometry 2004;75:277–296.

    PubMed  Google Scholar 

  29. Bartz-Schmidt KU, Sundtgen M, Widder RA, et al. Limits of twodimensional planimetry in the follow-up of glaucomatous optic discs. Graefes Arch Clin Exp Ophthalmol 1995;233:284–290.

    Article  CAS  PubMed  Google Scholar 

  30. Crowston JG, Hopley CR, Healey PR, Lee A, Mitchell P; Blue Mountains Eye Study. The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: The Blue Mountains Eye Study. Br J Ophthalmol 2004;88:766–770.

    Article  CAS  PubMed  Google Scholar 

  31. Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. Arch Ophthalmol 1993;111:831–836.

    PubMed  Google Scholar 

  32. Girkin CA. Principles of confocal scanning laser ophthalmoscopy for the clinician. In: Fingeret M, Flanagan JG, Liebmann JM, editors. The essential HRT primer. Heidelberg: Heidelberg Engineering; 2005. p. 1–9.

    Google Scholar 

  33. Jonas JB, Gusek GC, Naumanng GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 1988;29:1151–1158.

    CAS  PubMed  Google Scholar 

  34. Rotchford AP, Johnson GJ. Glaucoma in Zulus: a population-based cross-sectional survey in a rural district in south Africa. Arch Ophthalmol 2002;120:471–478.

    PubMed  Google Scholar 

  35. Mason RP, Kosoko O, Wilson MR, et al. National survey of the prevalence and risk factors of glaucoma in St. Lucia, West Indies. Part I. Prevalence findings. Ophthalmology 1989;96:1363–1368.

    CAS  PubMed  Google Scholar 

  36. Tomita G, Nyman K, Raitta C, Kawamura M. Interocular asymmetry of optic disc size and its relevance to visual field loss in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 1994;232:290–296.

    Article  CAS  PubMed  Google Scholar 

  37. Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999;43:293–320.

    Article  CAS  PubMed  Google Scholar 

  38. Jonas JB, Mardin CY, Schlotzer-Schrehardt U, Naumann GO. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci 1991;32:401–405.

    CAS  PubMed  Google Scholar 

  39. Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci 2003;44:623–637.

    Article  PubMed  Google Scholar 

  40. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005;24:39–73.

    Article  PubMed  Google Scholar 

  41. Mehdizadeh M, Nowroozzadeh MH. Optic disc size and glaucoma. Clin Exp Ophthalmol 2008;36:395–396. Comment in Clin Experiment Ophthalmol 2007;35:113–118.

    Article  Google Scholar 

  42. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci 2000;41:2991–3000.

    CAS  PubMed  Google Scholar 

  43. Jonas JB, Martus P, Budde WM, Junemann A, Hayler J. Small neuroretinal rim and large parapapillary atrophy as predictive factors for progression of glaucomatous optic neuropathy. Ophthalmology 2002;109:1561–1567.

    Article  PubMed  Google Scholar 

  44. Quigley HA, Coleman AL, Dorman-Pease ME. Larger optic nerve heads have more nerve fibers in normal monkey eyes. Arch Ophthalmol 1991;109:1441–1443.

    CAS  PubMed  Google Scholar 

  45. Zangwill LM, Weinreb RN, Berry CC, et al. Racial differences in optic disc topography: baseline results from the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Arch Ophthalmol 2004;122:22–28.

    Article  PubMed  Google Scholar 

  46. Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol 1988;226:587–590.

    Article  CAS  PubMed  Google Scholar 

  47. Rudnicka AR, Frost C, Owen CG, Edgar DF. Nonlinear behavior of certain optic nerve head parameters and their determinants in normal subjects. Ophthalmology 2001;108:2358–2368.

    Article  CAS  PubMed  Google Scholar 

  48. Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res 2000;19:1–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Wu.

About this article

Cite this article

Xiao, GG., Wu, LL. Optic disc analysis with Heidelberg Retina Tomography III in glaucoma with unilateral visual field defects. Jpn J Ophthalmol 54, 305–309 (2010). https://doi.org/10.1007/s10384-009-0808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-009-0808-y

Keywords

Navigation