Skip to main content

Advertisement

Log in

Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate acquisition and analysis methods for depth-resolved observation of slow retinal physiology induced changes in infrared backscatter in vivo.

Methods

A dark-adapted human was briefly subjected to a localized photobleach. For 20 min before and 30 min after the stimulus, volumetric optical coherence tomograms were collected partially overlapping the bleached region. Tomograms were segmented into retinal layers by a newly described algorithm exploiting information in adjacent B-scans. En face fundus images extracted from major intraretinal layers were laterally registered manually. Time series summarizing the observed backscatter in selected layers for the bleached and unbleached areas are shown with a variety of corrections and normalizations applied: tomograms were corrected for inherent sensitivity roll-off, and the ratio between other layers and an assumed unchanging layer (retinal pigment epithelium), as well as the ratio of the stimulated area to the unstimulated area, were calculated.

Results

Adjacent B-scan information allows a simpler segmentation algorithm to be used. Sensitivity roll-off correction reduces signal variability due to eye motion. After normalizations, the signal correlated with the stimulus appears strongest at the photoreceptor inner-outer segment junction.

Conclusions

Demonstrated methods manage data complexity and reduce uncorrelated signal variability. This single trial warrants further investigation of intrinsic optical signals to observe slow physiologic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binns A, Margrain TH. Evaluation of retinal function using the dynamic focal cone ERG. Ophthalmic Physiol Opt 2005;25:492–500.

    Article  PubMed  Google Scholar 

  2. Binns AM, Margrain TH. Evaluating retinal function in age-related maculopathy with the ERG photostress test. Invest Ophthalmol Vis Sci 2007;48:2806–2813.

    Article  PubMed  Google Scholar 

  3. Dimitrov PN, Guymer RH, Zele AJ, Anderson AJ, Vingrys AJ. Measuring rod and cone dynamics in age-related maculopathy. Invest Ophthalmol Vis Sci 2008;49:55–65.

    Article  PubMed  Google Scholar 

  4. Field GD, Chichilnisky EJ. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci 2007;30:1–30.

    Article  PubMed  CAS  Google Scholar 

  5. Delima VMF, Hanke W. Excitation waves in central grey matter: the retinal spreading depression. Prog Retin Eye Res 1997;16:657–690.

    Article  Google Scholar 

  6. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986;324:361–364.

    Article  PubMed  CAS  Google Scholar 

  7. Hanazono G, Tsunoda K, Shinoda K, Tsubota K, Miyake Y, Tanifuji M. Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Invest Ophthalmol Vis Sci 2007;48:2903–2912.

    Article  PubMed  Google Scholar 

  8. Tsunoda K, Satofuka S, Tanifuji M, Oguchi Y. Intrinsic signal imaging of macaque fundus to reveal two-dimensional functional map of the retina. Invest Ophthalmol Vis Sci 2003;44:U33.

    Google Scholar 

  9. Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M. Mapping cone-and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 2004;45:3820–3826.

    Article  PubMed  Google Scholar 

  10. Abramoff MD, Kwon YH, Ts’O D, et al. Visual stimulus-induced changes in human near-infrared fundus reflectance. Invest Ophthalmol Vis Sci 2006;47:715–721.

    Article  PubMed  Google Scholar 

  11. Maheswari RU, Takaoka H, Kadono H, Homma R, Tanifuji M. Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo. J Neurosci Methods 2003;124:83–92.

    Article  PubMed  Google Scholar 

  12. Bizheva K, Pflug R, Hermann B, et al. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 2006;103:5066–5071.

    Article  PubMed  CAS  Google Scholar 

  13. Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett 2006;31:2308–2310.

    Article  PubMed  CAS  Google Scholar 

  14. Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci 2008;49:713–719.

    Article  PubMed  Google Scholar 

  15. Yao XC, George JS. Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina. J Biomed Opt 2006;11.

  16. Považay B, Hermann B, Unterhuber A, et al. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J Biomed Opt 2007;12.

  17. Hale GM, Querry MR. Optical-constants of water in 200-nm to 200-μm wavelength region. Appl Opt 1973;12:555–563.

    Article  CAS  PubMed  Google Scholar 

  18. Jonas JB, Schneider U, Naumann GOH. Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 1992;230:505–510.

    Article  PubMed  CAS  Google Scholar 

  19. Považay, B, Hermann, B, Hofer, B, et al. Wide field optical coherence tomography of the choroid in vivo. Invest Ophthalmol Vis Sci 2008;50:1856–1863.

    Article  PubMed  Google Scholar 

  20. Alpern M. Rhodopsin kinetics in the human eye. J Physiol 1971;217:447–471.

    PubMed  CAS  Google Scholar 

  21. Hollins M, Alpern M. Dark-adaptation and visual pigment regeneration in human cones. J Gen Physiol 1973;62:430–447.

    Article  PubMed  CAS  Google Scholar 

  22. Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the Condor experience. Concurrency and Computation — Practice & Experience 2005;17:323–356.

    Article  Google Scholar 

  23. Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier domain vs. time domain optical coherence tomography. Opt Exp 2003;11:889–894.

    Article  CAS  Google Scholar 

  24. Fujimoto JG, Srinivasan VJ, Gorczynsk I, Liu JJ, Duker JS. Measurement of retinal physiology using high-speed, ultrahigh resolution optical coherence tomography. Functional Imaging of the Retina, First Symposium; 2008 April 2–27; Fort Lauderdale, FL, USA.

  25. Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R. Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 2008;146:679–687.

    Article  PubMed  Google Scholar 

  26. Fernandez DC, Salinas HM, Puliafito CA. Automated detection of retinal layer structures on optical coherence tomography images. Opt Exp 2005;13:10200–10216.

    Article  Google Scholar 

  27. Shahidi M, Wang ZW, Zelkha R. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. Am J Ophthalmol 2005;139:1056–1061.

    Article  PubMed  Google Scholar 

  28. Mujat M, Chan RC, Cense B et al. Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt Exp 2005;13:9480–9491.

    Article  Google Scholar 

  29. Koozekanani D, Boyer K, Roberts C. Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans Med Imaging 2001;20:900–916.

    Article  PubMed  CAS  Google Scholar 

  30. Tso DY, Kwon Y, Kardon R, et al. Signal sources observed with intrinsic signal optical imaging of retina. Invest Ophthalmol Vis Sci 2004;45:U154.

    Google Scholar 

  31. Steinberg RH, Schmidt R, Brown KT. Intracellular responses to light from cat pigment epithelium—origin of electroretinogram c-wave. Nature 1970;227:728–730.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Drexler.

About this article

Cite this article

Tumlinson, A.R., Hermann, B., Hofer, B. et al. Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography. Jpn J Ophthalmol 53, 315–326 (2009). https://doi.org/10.1007/s10384-009-0684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-009-0684-5

Key Words

Navigation