Skip to main content

Advertisement

Log in

Minimum endotoxin concentration causing inflammation in the anterior segment of rabbit eyes

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This was a quantitative study to investigate the minimum endotoxin concentration causing inflammation in the anterior segment of the eye.

Methods

Endotoxin was injected intracamerally in pigmented rabbits. A quantitative determination of flare and cells in the aqueous was performed using a laser flare-cell photometer, before and until 72 h after the treatment. An area under the curve (AUC) analysis was employed to evaluate the whole inflammatory reaction regarding flare values.

Results

The time course of flare values in each endotoxin group showed a similar pattern with a peak value at 3 h. An AUC corresponding to values for “average +2σ”, 19301.8 in control eyes, was considered the cutoff value. Using this cutoff value and the regression curve in endotoxin-treated groups, the minimum endotoxin concentration causing inflammation regarding flare values was determined to be 0.60 endotoxin units (EU). Cell counts (cells/0.5 mm3·0.5 s) corresponding to the value “average +2σ”, 6.07 at 24 h, in control eyes was considered to be the cutoff value. The minimum endotoxin concentration regarding cell counts was determined to be 0.23 EU.

Conclusion

There was a dissociation in response between flare and cells in the aqueous to intracameral endotoxin. The minimum endotoxin concentration causing inflammation ranged between 0.23 and 0.60 EU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neumann AC, McCarty GR, Sanders DR, Raanan MG. Small incisions to control astigmatism during cataract surgery. J Cataract Refract Surg 1989;15:78–84.

    PubMed  CAS  Google Scholar 

  2. Pearce JL. Intraocular lenses. Curr Opin Ophthalmol 1992;3:29–38.

    Article  PubMed  CAS  Google Scholar 

  3. Lundgren B, Holst A, Tärnholm A, Rolfsen W. Cellular reaction following cataract surgery with implantation of the heparin-surface-modified intraocular lens in rabbits with experimental uveitis. J Cataract Refract Surg 1992;18:602–606.

    PubMed  CAS  Google Scholar 

  4. Sawa M, Masuda K. Topical indomethacin in soft cataract aspiration. Jpn J Ophthalmol 1976;20:514–519.

    Google Scholar 

  5. Mochizuki M, Sawa M, Masuda K. Topical indomethacin in intracapsular extraction of senile cataract. Jpn J Ophthalmol 1977;21:215–226.

    Google Scholar 

  6. Hellinger WC, Hasan SA, Bacalis LP, et al. Outbreak of toxic anterior segment syndrome following cataract surgery associated with impurities in autoclave steam moisture. Infect Control Hosp Epidemiol 2006;27:294–298.

    Article  PubMed  Google Scholar 

  7. Mathys KC, Cohen KL, Bagnell CR. Identification of unknown intraocular material after cataract surgery: evaluation of a potential cause of toxic anterior segment syndrome. J Cataract Refract Surg 2008;34:465–469.

    Article  PubMed  Google Scholar 

  8. Kim SY, Park YH, Kim HS, Lee YC. Bilateral toxic anterior segment syndrome after cataract surgery. Can J Ophthalmol 2007;42:490–491.

    Article  PubMed  Google Scholar 

  9. Holland SP, Morck DW, Lee TL. Update on toxic anterior segment syndrome. Curr Opin Ophthalmol 2007;18:4–8.

    Article  PubMed  Google Scholar 

  10. Rosenbaum JT, McDevitt HO, Guss RB, et al. Endotoxin-induced uveitis in rats as a model for human disease. Nature 1980;286:611–613.

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs DR, Cohen HB. The inflammatory role of endotoxin in rabbit gram-negative bacterial endophthalmitis. Invest Ophthalmol Vis Sci 1984;25:1074–1079.

    PubMed  CAS  Google Scholar 

  12. Green K, Paterson CA, Cheeks L, et al. Ocular blood flow and vascular permeability in endotoxin-induced inflammation. Ophthalmic Res 1990;22:287–294.

    Article  PubMed  CAS  Google Scholar 

  13. McGahan MC, Fleisher LN. Cellular response to intravitreal injection of endotoxin and xanthine oxidase in rabbits. Graefes Arch Clin Exp Ophthalmol 1992;230:463–467.

    Article  PubMed  CAS  Google Scholar 

  14. Metrikin DC, Wilson CA, Berkowitz BA, et al. Measurement of blood-retinal barrier breakdown in endotoxin-induced endophthalmitis. Invest Ophthalmol Vis Sci 1995;36:1361–1370.

    PubMed  CAS  Google Scholar 

  15. Howes EL Jr, Aronson SB, McKay DG. Ocular vascular permeability. Effect of systemic administration of bacterial endotoxin. Arch Ophthalmol 1970;84:360–367.

    PubMed  Google Scholar 

  16. Williams RN, Paterson CA. PMN accumulation in aqueous humor and iris-ciliary body during intraocular inflammation. Invest Ophthalmol Vis Sci 1984;25:105–108.

    PubMed  CAS  Google Scholar 

  17. Csukas S, Paterson CA, Brown K, et al. Time course of rabbit ocular inflammatory response and mediator release after intravitreal endotoxin. Invest Ophthalmol Vis Sci 1990;31:382–387.

    PubMed  CAS  Google Scholar 

  18. Sawa M, Tsurimaki Y, Tsuru T, Shimizu H. New quantitative method to determine protein concentration and cell number in aqueous in vivo. Jpn J Ophthalmol 1988;32:132–142.

    PubMed  CAS  Google Scholar 

  19. Obata T, Nomura M, Kase Y, Sasaki H, Shirasawa Y. Early detection of the Limulus amebocyte lysate reaction evoked by endotoxins. Anal Biochem 2008;373:281–286.

    Article  PubMed  CAS  Google Scholar 

  20. Hogan MJ, Kimura SJ, Thygeson P. Signs and symptoms of uveitis. I. Anterior uveitis. Am J Ophthalmol 1959;47:155–170.

    PubMed  CAS  Google Scholar 

  21. Oshika T, Nishi M, Mochizuki M, et al. Quantitative assessment of aqueous flare and cells in uveitis. Jpn J Ophthalmol 1989;33:279–287.

    PubMed  CAS  Google Scholar 

  22. Goto H, Mochizuki M, Yamaki K, et al. Epidemiological survey of intraocular inflammation in Japan. Jpn J Ophthalmol 2007;51:41–44.

    Article  PubMed  Google Scholar 

  23. Inoue Y, Usui M, Ohashi Y, Shiota H, Yamazaki T. Preoperative disinfection of the conjunctival sac with antibiotics and iodine compounds: a prospective randomized multicenter study. Jpn J Ophthalmol 2008;52:151–161.

    Article  PubMed  CAS  Google Scholar 

  24. Stjernschantz J. Autocoids and neuropeptides. In: Sears ML, editor. Pharmacology of the eye. Berlin: Springer; 1984, p. 311–366.

    Google Scholar 

  25. Miyake K. Prophylaxis of aphakic cystoid macular edema using topical indomethacin. J Am Intraocul Implant Soc 1978;4:174–179.

    PubMed  CAS  Google Scholar 

  26. Takeo S, Watanabe Y, Suzuki M, Kadonosono K. Wavefront analysis of acrylic spherical and aspherical intraocular lenses. Jpn J Ophthalmol 2008;52:250–254.

    Article  PubMed  Google Scholar 

  27. Sawa M: Clinical application of laser flare-cell meter. Jpn J Ophthalmol 1990;34:346–363.

    PubMed  CAS  Google Scholar 

  28. Ambache N. The use and limitations of atropine for pharmacological studies on autonomic effectors. Pharmacol Rev 1955;7:467–494.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Sawa.

About this article

Cite this article

Sakimoto, A., Sawa, M., Oshida, T. et al. Minimum endotoxin concentration causing inflammation in the anterior segment of rabbit eyes. Jpn J Ophthalmol 53, 425–432 (2009). https://doi.org/10.1007/s10384-009-0683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-009-0683-6

Key Words

Navigation