Skip to main content
Log in

Morphological observations of rat corneal endothelial cells after exposure to ozonated solution

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether exposure to ozonated solution alters the morphology of corneal endothelial cells in rats and to examine the protective effect of ascorbic acid.

Methods

The anterior chambers of rat eyes were filled with 4 ppm of ozonated solution. Some were left in that state, while others were flushed out either 10, 30, or 60 s after exposure to a balanced salt solution (BSS), or to BSS containing 0.001 M ascorbic acid. Corneal endothelial cells were assessed by scanning and electron microscopy either 1 h or 1 week after treatment, and the expressions of aquaporin (AQ)-1 and zonula occludens (ZO)-1 were determined by immunohistochemistry.

Results

When exposure time was longer than 10 s, damaged cell membranes and abnormal organelles were observed 1 h after treatment. The longer the exposure time, the more severe the observed alterations; however, the eyes regained almost their normal state at 1 week. When the BSS contained ascorbic acid, no severe damage was observed under any condition. Normal AQ-1 and ZO-1 expressions were observed even with 60 s of exposure when ascorbic acid was used.

Conclusions

A short period of irrigation of the anterior chamber with ozonated solution does not harm the corneal endothelium even when used in combination with ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samad A, Solomon LD, Miller MA, Mendelson J. Anterior chamber contamination after uncomplicated phacoemulsification and intraocular lens implantation. Am J Ophthalmol 1995;120:143–150.

    Article  CAS  PubMed  Google Scholar 

  2. Mistlberger A, Ruckhofer J, Raithel E, et al. Anterior chamber contamination during cataract surgery with intraocular lens implantation. J Cataract Refract Surg 1997;23:1064–1069.

    Article  CAS  PubMed  Google Scholar 

  3. Srinivasan R, Tiroumal S, Kanungo R, Natarajan MK. Microbial contamination of the anterior chamber during phacoemulsification. J Cataract Refract Surg 2002;28:2173–2176.

    Article  PubMed  Google Scholar 

  4. Chang DF, Braga-Mele R, Mamalis N, et al. Prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2007 ASCRS member survey. J Cataract Refract Surg 2007;33:1801–1805.

    Article  PubMed  Google Scholar 

  5. Gills IP. Prevention of endophthalmitis by intraocular solution filtration and antibiotics. Am Intra-Ocular Implant Soc J 1985;11:185–186.

    Article  CAS  Google Scholar 

  6. Adenis JP, Robert PY, Mounier M, Denis F. Anterior chamber concentrations of vancomycin in the irrigating solution at the end of cataract surgery. J Cataract Refract Surg 1997;23:111–114.

    Article  CAS  PubMed  Google Scholar 

  7. Beigi B, Westlake W, Chang B, et al. The effect of intracameral, perioperative antibiotics on microbial contamination of anterior chamber aspirates during phacoemulsification. Eye 1998;12:390–394.

    Article  PubMed  Google Scholar 

  8. Abu el-Asrar AM, Kadry AA, Shibl AM, et al. Antibiotics in the irrigating solutions reduce Staphylococcus epidermidis adherence to intraocular lenses. Eye 2000;14:225–230.

    Article  PubMed  Google Scholar 

  9. Tomlinson H, Rich S. Lipid peroxidation, a result of injury in bean leaves exposed to ozone. Phytopathology 1970;60:1531–1532.

    Article  CAS  PubMed  Google Scholar 

  10. Yamayoshi T, Tatsumi N. Microbicidal effects of ozone solution on methicillin-resistant Staphylococcus aureus. Drugs Exp Clin Res 1993;19:59–64.

    CAS  PubMed  Google Scholar 

  11. Salgo MG, Cueto R, Pryor WA. Effect of lipid ozonation products on liposomal membranes detected by Laurdan fluorescence. Free Radic Biol Med 1995;19:609–616.

    Article  CAS  PubMed  Google Scholar 

  12. Sugita H, Asai T, Hayashi K, et al. Application of ozone disinfection to remove Enterococcus seriolicida, Pasteurella piscicida, and Vibrio anguillarum from seawater. Appl Environ Microbiol 1992;58:4072–4075.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Restaino L, Frampton EW, Hemphill JB, Palnikar P. Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 1995;61:3471–3475.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore G, Griffith C, Peters A. Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot 2000;63:1100–1106.

    Article  CAS  PubMed  Google Scholar 

  15. Ozmen V, Thomas WO. Healy JT, et al. Irrigation of the abdominal cavity in the treatment of experimentally induced microbial peritonitis: efficacy of ozonated saline. Am Surg 1993;59:297–303.

    CAS  PubMed  Google Scholar 

  16. Hanasaki H. Clinical evaluation of cataract surgery using ozone water as an ocular surface disinfectant [in Japanese]. Jpn J Ophthalmic Surg 2000;13:456–458.

    Google Scholar 

  17. Kashiwagi K, Saito K, Wang Y-D, et al. Safety of ozonated solution as an antiseptic of the ocular surface prior to ophthalmic surgery. Ophthalmologica 2001;215:351–356.

    Article  CAS  PubMed  Google Scholar 

  18. Negishi K, Takahashi K, Izumi K, et al. Efficacy and safety of an ozonated solution used preoperatively to disinfect the ocular surface, and to irrigate the corneal flap in laser in situ keratomileusis [in Japanese]. Folia Ophthalmol Jpn 2002;53:108–112.

    Google Scholar 

  19. Takahashi H, Fujimoto C, Matsui H, et al. Anterior chamber irrigation with an ozonated solution as prophylaxis against infectious endophthalmitis. J Cataract Refract Surg 2004;30:1773–1780.

    Article  PubMed  Google Scholar 

  20. Hull DS, Chukas S, Green K, Livingston V. Hydrogen peroxide and corneal endothelium. Acta Opthalmologica 1981;59:409–421.

    Article  CAS  Google Scholar 

  21. Riley MV, Giblin FJ. Toxic effect of hydrogen peroxide on corneal endothelium. Curr Eye Res 1982–1983;2:451–458.

    Article  PubMed  Google Scholar 

  22. Wollensak G, Spoerl E, Wisch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003;29:1786–1790.

    Article  PubMed  Google Scholar 

  23. Cho KS, Lee EH, Choi JS, Joo CK. Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 1999;40:911–919.

    CAS  PubMed  Google Scholar 

  24. Zeng LH, Rootman DS, Fung KP, Wu TW. Comparative cytoprotection of cultured corneal endothelial cells by water-soluble antioxidants against free-radical damage. Cornea 1995;14:509–514.

    Article  CAS  PubMed  Google Scholar 

  25. Varma SD, Ali AH, Devamanoharan PS, Morris SM. Nitriteinduced photo-oxidation of thiol and its implications in smog toxicity to the eye: prevention by ascorbate. J Ocul Pharmacol Ther 1997;13:179–187.

    Article  CAS  PubMed  Google Scholar 

  26. Rubowitz A, Assia AI, Rosner M, Topaz M. Antioxidant protection against corneal damage by free radicals during phacoemulsification. Invest Ophthalmol Vis Sci 2003;44:1866–1870.

    Article  PubMed  Google Scholar 

  27. Nemet AY, Assia EI, Meyerstein D, Meyerstein N, Gedanken A, Topaz M. Protective effect of free-radical scavengers on corneal endothelial damage in phacoemulsification. J Cataract Refract Surg 2007;33:310–315.

    Article  PubMed  Google Scholar 

  28. Hamann S, Zeuthen T, La Cour M, et al. Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 1998;274:C1332–1345.

    Article  CAS  PubMed  Google Scholar 

  29. Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem 2002;277:19139–19144.

    Article  CAS  PubMed  Google Scholar 

  30. Verkman AS. Role of aquaporin water channels in eye function. Exp Eye Res 2003;76:137–143.

    Article  CAS  PubMed  Google Scholar 

  31. Macnamara E, Samas GW, Smith K. Aquaporin-1 expression is decreased in human and mouse corneal endothelial function. Mol Vis 2004;10:51–56.

    CAS  PubMed  Google Scholar 

  32. Itoh M, Yonemura S, Nagafuchi A, Tsukita S. A 220-kD undercoat-constitutive protein: its specific localization at cadherin-based cell-cell adhesion sites. J Cell Biol 1991;115:1449–1462.

    Article  CAS  PubMed  Google Scholar 

  33. Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S. The 220-kD protein colocalizing with cadherins in not-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993;121:491–502.

    Article  CAS  PubMed  Google Scholar 

  34. Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol 1994;124:949–961.

    Article  CAS  PubMed  Google Scholar 

  35. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986;103:755–766.

    Article  CAS  PubMed  Google Scholar 

  36. Petroll WM, Jester JV, Barry-Lane PA, Cavanagh HD. Effects of basic FGF and TGF beta 1 on F-actin and ZO-1 organization during cat endothelial wound healing. Cornea 1996;15:525–532.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takahashi.

About this article

Cite this article

Suzuki, H., Sato, S., Murano, N. et al. Morphological observations of rat corneal endothelial cells after exposure to ozonated solution. Jpn J Ophthalmol 53, 151–158 (2009). https://doi.org/10.1007/s10384-008-0629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-008-0629-4

Key Words

Navigation