Skip to main content
Log in

Significance of plasma relaxin-2 levels in patients with primary hypertension and type 2 diabetes mellitus

Bedeutung der Plasma-Relaxin-2-Werte bei Patienten mit primärer Hypertonie und Diabetes mellitus Typ 2

  • original article
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

This study aimed to evaluate plasma relaxin‑2 (RLN-2) levels in patients with arterial hypertension (AH) and their relationships with clinical and laboratory parameters.

Methods

The study involved 106 hypertensive patients, including 55 with type 2 diabetes mellitus (T2DM), and 30 control subjects. Plasma RLN-2 levels were measured using an enzyme-linked immunosorbent assay kit.

Results

RLN-2 levels were reduced in patients with AH compared to healthy volunteers (p < 0.001), and hypertensive patients with T2DM had lower RLN-2 levels than those without impaired glucose metabolism (p < 0.001). RLN‑2 was negatively correlated with systolic blood pressure (SBP) (p < 0.001) and anthropometric parameters such as body mass index (BMI; p = 0.027), neck (p = 0.045) and waist (p = 0.003) circumferences, and waist-to-hip ratio (p = 0.011). RLN‑2 also had inverse associations with uric acid levels (p = 0.019) and lipid profile parameters, particularly triglycerides (p < 0.001) and non-HDL-C/HDL‑C (p < 0.001), and a positive relationship with HDL‑C (p < 0.001). RLN‑2 was negatively associated with glucose (p < 0.001), insulin (p = 0.043), HbA1c (p < 0.001), and HOMA-IR index (p < 0.001). Univariate binary logistic regression identified RLN‑2 as a significant predictor of impaired glucose metabolism (p < 0.001).

Conclusions

Decreased RLN-2 levels in patients with AH and T2DM and established relationships of RLN‑2 with SBP and parameters of glucose metabolism and lipid profile suggest a diagnostic role of RLN‑2 as a biomarker for AH with T2DM.

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, die Konzentrationen von Plasma-Relaxin‑2 (RLN-2) bei Patienten mit arterieller Hypertonie (AH) und ihre Beziehung zu klinischen und labormedizinischen Parametern zu untersuchen.

Methoden

An der Studie nahmen 106 AH-Patienten teil, davon 55 mit Diabetes mellitus Typ 2 (Typ-2-Diabetes) und 30 Kontrollpersonen. Die Plasmaspiegel von RLN‑2 wurden mit einem Enzymimmunoassay gemessen.

Ergebnisse

Die RLN-2-Werte waren bei AH-Patienten im Vergleich zu gesunden Probanden erniedrigt (p < 0,001), und AH-Patienten mit Typ-2-Diabetes wiesen niedrigere RLN-2-Werte auf als Patienten ohne gestörten Glukosestoffwechsel (p < 0,001). RLN‑2 war negativ korreliert mit dem systolischen Blutdruck (SBP; p < 0,001) und mit anthropometrischen Parametern wie Body-Mass-Index (BMI; p = 0,027), Halsumfang (p = 0,045), Taillenumfang (p = 0,003) und Taille-Hüfte-Verhältnis (p = 0,011). Für RLN‑2 bestand auch ein inverser Zusammenhang mit dem Harnsäurespiegel (p = 0,019) und den Lipidprofilparametern, insbesondere mit Triglyzeriden (p < 0,001) und Nicht-High-Density-Lipoprotein-Cholesterin (Non-HDL-C)/HDL‑C (p < 0,001), außerdem lag eine positive Korrelation mit HDL‑C vor (p < 0,001). RLN‑2 war negativ mit Glukose (p < 0,001), Insulin (p = 0,043), HbA1c (p < 0,001) und dem HOMA-IR-Index (Homeostatic Model Assessment for Insulin Resistance; p < 0,001) assoziiert. In der univariaten binären logistischen Regression erwies sich RLN‑2 als signifikanter Prädiktor für einen gestörten Glukosestoffwechsel (p < 0,001).

Schlussfolgerung

Erniedrigte RLN-2-Werte bei Patienten mit AH und Typ-2-Diabetes und nachgewiesene Beziehungen zwischen RLN‑2 und SBP sowie Parametern des Glukosestoffwechsels und des Lipidprofils deuten auf eine diagnostische Rolle von RLN‑2 als Biomarker für AH mit Typ-2-Diabetes hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. World Health Organization (2020) Global Health Estimates 2019 Summary Tables: Deaths by Cause, Age And Sex, by World Bank Income Group, 2000–2019. https://www.who.int/docs/default-source/gho-documents/global-health-estimates/ghe2019_cod_wbincome_2000_201933383745-a750-4d94-8491-fb209dcece6f.xlsx?sfvrsn=e7bafa8_5. Accessed 09 September 2023.

  2. Ohishi M. Hypertension with diabetes mellitus: physiology and pathology. Hypertens Res. 2018;41(6):389–93.

    Article  PubMed  Google Scholar 

  3. Bathgate RA, Halls ML, van der Westhuizen ET, et al. Relaxin family peptides and their receptors. Physiol Rev. 2013;93(1):405–80.

    Article  CAS  PubMed  Google Scholar 

  4. Dschietzig T, Richter C, Bartsch C, et al. The pregnancy hormone relaxin is a player in human heart failure. Faseb J. 2001;15(12):2187–95.

    Article  CAS  PubMed  Google Scholar 

  5. Aragón-Herrera A, Feijóo-Bandín S, Anido-Varela L, et al. Relaxin‑2 as a Potential Biomarker in Cardiovascular Diseases. J Pers Med. 2022;12(7):1021.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feijóo-Bandín S, Aragón-Herrera A, Rodríguez-Penas D, et al. Relaxin‑2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Front Physiol. 2017;8:599.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hossain MA, Praveen P, Noorzi NA, et al. Development of Novel High-Affinity Antagonists for the Relaxin Family Peptide Receptor 1. Acs Pharmacol Transl Sci. 2023;6(5):842–53.

    Article  CAS  PubMed  Google Scholar 

  8. Lian X, Beer-Hammer S, König GM, et al. RXFP1 Receptor Activation by Relaxin‑2 Induces Vascular Relaxation in Mice via a Gαi2-Protein/PI3Kß/γ/Nitric Oxide-Coupled Pathway. Front Physiol. 2018;9:1234.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sasser JM, Cunningham MW Jr, Baylis C. Serelaxin reduces oxidative stress and asymmetric dimethylarginine in angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2014;307(12):F1355–F62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Snowdon VK, Lachlan NJ, Hoy AM, et al. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial. PLoS Med. 2017;14(2):e1002248.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu Q, Chakravorty A, Bathgate RA, Dart AM, Du XJ. Relaxin therapy reverses large artery remodeling and improves arterial compliance in senescent spontaneously hypertensive rats. Hypertension. 2010;55(5):1260–6.

    Article  CAS  PubMed  Google Scholar 

  12. Ponikowski P, Mitrovic V, Ruda M, et al. A randomized, double-blind, placebo-controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J. 2014;35(7):431–41.

    Article  CAS  PubMed  Google Scholar 

  13. Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin‑2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39.

    Article  CAS  PubMed  Google Scholar 

  14. Metra M, Teerlink JR, Cotter G, et al. Effects of Serelaxin in Patients with Acute Heart Failure. N Engl J Med. 2019;381(8):716–26.

    Article  CAS  PubMed  Google Scholar 

  15. Corcoran D, Radjenovic A, Mordi IR, et al. Vascular effects of serelaxin in patients with stable coronary artery disease: a randomized placebo-controlled trial. Cardiovasc Res. 2021;117(1):320–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kobalava Z, Villevalde S, Kotovskaya Y, et al. Pharmacokinetics of serelaxin in patients with hepatic impairment: a single-dose, open-label, parallel group study. Br J Clin Pharmacol. 2015;79(6):937–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gifford FJ, Dunne PDJ, Weir G, et al. A phase 2 randomised controlled trial of serelaxin to lower portal pressure in cirrhosis (STOPP). Trials. 2020;21(1):260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dahlke M, Halabi A, Canadi J, Tsubouchi C, Machineni S, Pang Y. Pharmacokinetics of serelaxin in patients with severe renal impairment or end-stage renal disease requiring hemodialysis: A single-dose, open-label, parallel-group study. J Clin Pharmacol. 2016;56(4):474–83.

    Article  CAS  PubMed  Google Scholar 

  19. Khanna D, Clements PJ, Furst DE, et al. Recombinant human relaxin in the treatment of systemic sclerosis with diffuse cutaneous involvement: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2009;60(4):1102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sonaglia F, Milia P, Caserio M, et al. Efficacy and safety of oral porcine relaxin (pRLX) in adjunct to physical exercise in the treatment of peripheral arterial disease (PAD). Ital J Anat Embryol. 2013;118(1 Suppl):84–91.

  21. Gedikli O, Yilmaz H, Kiris A, et al. Circulating levels of relaxin and its relation to cardiovascular function in patients with hypertension. Blood Press. 2009;18(1–2:68–73.

    Article  Google Scholar 

  22. Zhang X, Zhu M, Zhao M, et al. The plasma levels of relaxin‑2 and relaxin‑3 in patients with diabetes. Clin Biochem. 2013;46(16–17:1713–6.

    Article  Google Scholar 

  23. Szepietowska B, Gorska M, Szelachowska M. Plasma relaxin concentration is related to beta-cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2008;79(3):e1–e3.

    Article  CAS  PubMed  Google Scholar 

  24. Gao X, Li H, Wang P, Chen H. Decreased Serum Relaxin‑2 Is Correlated with Impaired Islet β‑Cell Function in Patients with Unstable Angina and Abnormal Glucose Metabolism. Int Heart J. 2018;59(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bryant GD, Panter ME, Stelmasiak T. Immunoreactive relaxin in human serum during the menstrual cycle. J Clin Endocrinol Metab. 1975;41(06):1065–9.

    Article  CAS  PubMed  Google Scholar 

  26. Nose-Ogura S, Yoshino O, Yamada-Nomoto K, et al. Oral contraceptive therapy reduces serum relaxin‑2 in elite female athletes. J Obstet Gynaecol Res. 2017;43(3):530–5.

    Article  CAS  PubMed  Google Scholar 

  27. Casey E, Anderson T, Wideman L, et al. Optimal Paradigms for Measuring Peak Serum Relaxin in Eumenorrheic, Active Females. Reprod Med Int. 2018;1:6.

    Google Scholar 

  28. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension [published correction appears in Eur Heart J. 2019 Feb 1;40(5):475]. Eur Heart J. 2018;39(33):3021–104.

  29. American Diabetes Association Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin. Diabetes. 2022;40(1):10–38.

  30. Kidney Disease. Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney. Dis Kidney Inter Suppl. 2013;3(1):1–150.

    Google Scholar 

  31. World Health Organization Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii, 1–253.

  32. World Health Organization Physical status: the use and interpretation of anthropometry. Report of a WHO. Ser, Vol. 854. Committee. World Health Organ Tech Rep: Expert; 1995. pp. 1–452.

  33. World Health Organization. Noncommunicable Diseases and Mental Health Cluster (2020) WHO STEPS Surveillance Manual: the WHO STEPwise approach to noncommunicable disease risk factor surveillance. https://www.who.int/docs/default-source/ncds/ncd-surveillance/steps/steps-manual.pdf?sfvrsn=c281673d_5. Accessed 09 September 2023.

  34. Bryant GD, Sassin JF, Weitzman ED, et al. Relaxin immunoactivity in human plasma during a 24-hr period. J Reprod Fertil. 1976;48(2):389–92.

    Article  CAS  PubMed  Google Scholar 

  35. Pintalhao M, Castro-Chaves P, Vasques-Novoa F, et al. Relaxin serum levels in acute heart failure are associated with pulmonary hypertension and right heart overload. Eur J Heart Fail. 2017;19(2):218–25.

    Article  CAS  PubMed  Google Scholar 

  36. Kupari M, Mikkola TS, Turto H, et al. Is the pregnancy hormone relaxin an important player in human heart failure? Eur J Heart Fail. 2005;7(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  37. Aragón-Herrera A, Couselo-Seijas M, Feijóo-Bandín S, et al. Relaxin‑2 plasma levels in atrial fibrillation are linked to inflammation and oxidative stress markers. Sci Rep. 2022;12(1:22287.

    Article  ADS  Google Scholar 

  38. Wolf JM, Cameron KL, Clifton KB, et al. Serum relaxin levels in young athletic men are comparable with those in women. Orthopedics. 2013;36(2):128–31.

    Article  PubMed  Google Scholar 

  39. Dragoo JL, Castillo TN, Braun HJ, et al. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med. 2011;39(10):2175–80.

    Article  PubMed  Google Scholar 

  40. Owens BD, Cameron KL, Clifton KB, et al. Association Between Serum Relaxin and Subsequent Shoulder Instability. Orthopedics. 2016;39(4):e724–e8.

    Article  PubMed  Google Scholar 

  41. Nonhoff J, Ricke-Hoch M, Mueller M, et al. Serelaxin treatment promotes adaptive hypertrophy but does not prevent heart failure in experimental peripartum cardiomyopathy. Cardiovasc Res. 2017;113(6):598–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dragoo JL, Castillo TN, Korotkova TA, et al. Trends in serum relaxin concentration among elite collegiate female athletes. Int J Womens Health. 2011;3:19–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Giordano N, Papakostas P, Lucani B, et al. Serum relaxin in systemic sclerosis. J Rheumatol. 2005;32(11):2164–6.

    CAS  PubMed  Google Scholar 

  44. Binder C, Simon A, Binder L, et al. Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat. 2004;87(2):157–66.

    Article  CAS  PubMed  Google Scholar 

  45. Krüger S, Graf J, Merx MW, et al. Relaxin kinetics during dynamic exercise in patients with chronic heart failure. Eur J Intern Med. 2004;15(1):54–6.

    Article  PubMed  Google Scholar 

  46. Wolf JM, Scher DL, Etchill EW, et al. Relationship of relaxin hormone and thumb carpometacarpal joint arthritis. Clin Orthop Relat Res. 2014;472(4):1130–7.

    Article  PubMed  Google Scholar 

  47. Schöndorf T, Lübben G, Hoopmann M, et al. Relaxin expression correlates significantly with serum fibrinogen variation in response to antidiabetic treatment in women with type 2 diabetes mellitus. Gynecol Endocrinol. 2007;23(6):356–60.

    Article  PubMed  Google Scholar 

  48. Samuel CS, Royce SG, Hewitson TD, Denton KM, Cooney TE, Bennett RG. Anti-fibrotic actions of relaxin [published correction appears in Br J Pharmacol. 2017;174(24):4836]. Br J Pharmacol. 2017;174(10):962–976.

  49. Wolf JM, Williams AE, Delaronde S, et al. Relationship of serum relaxin to generalized and trapezial-metacarpal joint laxity. J Hand Surg Am. 2013;38(4):721–8.

    Article  PubMed  Google Scholar 

  50. Papadopoulos DP, Makris T, Perrea D, et al. Apelin and relaxin plasma levels in young healthy offspring of patients with essential hypertension. J Clin Hypertens (greenwich). 2014;16(3):198–201.

    Article  CAS  PubMed  Google Scholar 

  51. Papadopoulos DP, Mourouzis I, Faselis C, et al. Masked hypertension and atherogenesis: the impact of apelin and relaxin plasma levels. J Clin Hypertens (greenwich). 2013;15(5):333–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sanidas E, Tsakalis K, Papadopoulos DP, et al. The impact of apelin and relaxin plasma levels in masked hypertension and white coat hypertension. J Clin Hypertens (greenwich). 2019;21(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  53. Bonanno A, Riccobono L, Bonsignore MR, et al. Relaxin in Obstructive Sleep Apnea: Relationship with Blood Pressure and Inflammatory Mediators. Respiration. 2016;91(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  54. Lopez AY, Dereke J, Landin-Olsson M, et al. Plasma levels of relaxin‑2 are higher and correlated to C‑peptide levels in early gestational diabetes mellitus. Endocrine. 2017;57(3):545–7.

    Article  Google Scholar 

  55. Wang P, Li HW, Wang YP, Chen H, Zhang P. Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition. J Endocrinol Invest. 2009;32(3):242–7.

    Article  CAS  PubMed  Google Scholar 

  56. Bonner JS, Lantier L, Hocking KM, et al. Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes. 2013;62(9):3251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bitto A, Irrera N, Minutoli L, et al. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice. Clin Sci (lond). 2013;125(12):575–85.

    Article  CAS  PubMed  Google Scholar 

  58. Singh S, Simpson RL, Bennett RG. Relaxin activates peroxisome proliferator-activated receptor γ (PPARγ) through a pathway involving PPARγ coactivator 1α (PGC1α). J Biol Chem. 2015;290(2):950–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ng HH, Leo CH, Parry LJ, Ritchie RH. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front Pharmacol. 2018;9:501.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ng HH, Leo CH, Prakoso D, Qin C, Ritchie RH, Parry LJ. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes. Sci Rep. 2017;7:39604.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dschietzig TB, Krause-Relle K, Hennequin M, et al. Relaxin‑2 does not ameliorate nephropathy in an experimental model of type‑1 diabetes. Kidney Blood Press Res. 2015;40(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  62. Wong SE, Samuel CS, Kelly DJ, et al. The anti-fibrotic hormone relaxin is not reno-protective, despite being active, in an experimental model of type 1 diabetes. Protein Pept Lett. 2013;20(9):1029–38.

    Article  CAS  PubMed  Google Scholar 

  63. Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, Assi HI. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022;23(2):786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aragón-Herrera A, Feijóo-Bandín S, Abella V, et al. Serelaxin (recombinant human relaxin-2) treatment affects the endogenous synthesis of long chain poly-unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue. Pharmacol Res. 2019;144:51–65.

    Article  PubMed  Google Scholar 

  65. Aragón-Herrera A, Feijóo-Bandín S, Moraña-Fernández S, et al. Relaxin has beneficial effects on liver lipidome and metabolic enzymes. Faseb J. 2021;35(7):e21737.

    Article  PubMed  Google Scholar 

  66. McGowan BM, Minnion JS, Murphy KG, et al. Central and peripheral administration of human relaxin‑2 to adult male rats inhibits food intake. Diabetes Obes Metab. 2010;12(12):1090–6.

    Article  CAS  PubMed  Google Scholar 

  67. Borghi C, Cicero AFG. Serum Uric Acid and Cardiometabolic Disease: Another Brick in the Wall? Hypertension. 2017;69(6:1011–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

O. Pankova: conceptualization, design, methodology, project administration, resource, data curation, investigation, formal analysis, visualization, validation, literature search, writing—original draft preparation. O. Korzh: conceptualization, design, methodology, validation, supervision, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olena Pankova.

Ethics declarations

Conflict of interest

O. Pankova and O. Korzh declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. The study protocol was approved by the Ethics Committee of the Medical-Sanitary Base of JSC “Kharkiv Tractor Plant” (date of approval: 21 September 2021).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankova, O., Korzh, O. Significance of plasma relaxin-2 levels in patients with primary hypertension and type 2 diabetes mellitus. Wien Med Wochenschr (2024). https://doi.org/10.1007/s10354-024-01035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10354-024-01035-x

Keywords

Schlüsselwörter

Navigation