Skip to main content
Log in

Avicenna’s views on pest control and medicinal plants he prescribed as natural pesticides

Avicennas Ansichten zur Schädlingsbekämpfung und zu von ihm verschriebenen Heilpflanzen als natürliche Pestizide

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

The present study aimed to introduce Avicenna’s views on pest control and the medicinal plants he proposed as natural pesticides. Also, we addressed the strategies that he leveraged to formulate and prescribe them, and, finally, we put his views into perspective with modern science. The data were collected using Al-Qanun Fi Al-Tibb (The Canon of Medicine) as well as scientific databases. According to Al-Qanun Fi Al-Tibb, 42 medicinal plants are described as natural pest control agents. After introducing the pest control properties of each plant, Avicenna explained the appropriate strategies for use of these plants. These strategies or formulations included incensing, spraying, spreading, rubbing, smudging, and scent-dispersing, which are equivalent to the modern pesticide formulations of fumigants, aerosols, pastes and poisoned baits, lotions, creams, and slow-release formulations, respectively. This study revealed that Avicenna introduced the pest control approach with natural plants in his book Al-Qanun Fi Al-Tibb and, thus, harnessed the power of nature to control nature. Future research is recommended to find the pest control merits of the presented medicinal plants, in order to incorporate them into pest control programs and reduce environmental pollution resulting from the complications of current synthetic pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The original contributions presented in the study are included in the article and further inquiries can be directed to the corresponding author.

References

  1. Chadha PP. Evaluation of genotoxicity in pesticide distributors of Punjab. J Life Sci. 2013;5:17–22.

    Google Scholar 

  2. Himani PU, Mahawer SK, Kumar R, et al. Plant protection through agrochemicals and its consequences. Plant protection: from chemicals to biologicals. 2022. p. 25.

    Book  Google Scholar 

  3. Tănăsescu E‑C, Lite M‑C. Harmful health effects of pesticides used on museum textile artifacts-overview. Ecotoxicol Environ Saf. 2022;247:114240.

    Article  PubMed  Google Scholar 

  4. Fu H, Tan P, Wang R, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J Hazard Mater. 2022;424:127494.

    Article  CAS  PubMed  Google Scholar 

  5. Schleiffer M, Speiser B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain—a review. Environ Pollut. 2022;120116.

  6. Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. Int J Environ Health Res. 2022;32:2718–55.

    Article  CAS  PubMed  Google Scholar 

  7. Acheuk F, Basiouni S, Shehata AA, et al. Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules. 2022;12:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ngegba PM, Cui G, Khalid MZ, et al. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12:600.

    Article  CAS  Google Scholar 

  9. Nasiri E, Orimi JR, Hashemimehr M, et al. Avicenna’s clinical toxicology approach and beneficial materia medica against oral poisoning. Arch Toxicol. 2023;97:981–9.

    Article  CAS  PubMed  Google Scholar 

  10. Samarrai R, Radwan T, Samarrai M, et al. An analysis of otolaryngology in avicenna’s canon of medicine: utilizing the original Arabic text. Otolaryngol Head Neck Surg. 2023;.

  11. Amr SS, Tbakhi A. Ibn Sina (Avicenna): the prince of physicians. Ann Saudi Med. 2007;27:134–5. https://doi.org/10.5144/0256-4947.2007.134.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ibn-e-Sina A. Al-Qānūn fī al-Tibb (Canon of Medicine). Beirut: Dare Ehyae al-Torathe al-Arabi; 2005.

    Google Scholar 

  13. Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology Elsevier; 2010. pp. 119–229.

    Chapter  Google Scholar 

  14. Osborn D. Pesticides in modern agriculture. Environ Impacts Mod Agric. 2012;34:111.

    Article  Google Scholar 

  15. Rattner BA. History of wildlife toxicology. Ecotoxicology. 2009;18:773–83.

    Article  CAS  PubMed  Google Scholar 

  16. Keswani C, Dilnashin H, Birla H, et al. Global footprints of organochlorine pesticides: a pan-global survey. Environ Geochem Health. 2022; 1–29.

  17. Parra-Arroyo L, González-González RB, Castillo-Zacarías C, et al. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ. 2022;807:151879.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zaller JG, Kruse-Plaß M, Schlechtriemen U, et al. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci Total Environ. 2022;838:156012.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Intisar A, Ramzan A, Sawaira T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—a review. Chemosphere. 2022;293:133538.

    Article  CAS  PubMed  Google Scholar 

  20. Mottes C, Sabatier P, Evrard O, et al. Pesticide resurrection. Environ Chem Lett. 2022;20:3357–62. https://doi.org/10.1007/s10311-021-01347-z.

    Article  CAS  Google Scholar 

  21. Vekemans M‑C, Marchand PA. The fate of biocontrol agents under the European phytopharmaceutical regulation: how this regulation hinders the approval of botanicals as new active substances. Environ Sci Pollut Res Int. 2020;27:39879–87. https://doi.org/10.1007/s11356-020-10114-6.

    Article  PubMed  Google Scholar 

  22. Silva V, Yang X, Fleskens L, et al. Environmental and human health at risk—scenarios to achieve the farm to fork 50 % pesticide reduction goals. Environ Int. 2022;165:107296.

    Article  CAS  PubMed  Google Scholar 

  23. Rahimi R, Irannejad S, Noroozian M. Avicenna’s pharmacological approach to memory enhancement. Neurol Sci. 2017;38:1147–57. https://doi.org/10.1007/s10072-017-2835-7.

    Article  PubMed  Google Scholar 

  24. Rashid TS, Awla HK, Sijam K. Formulation, characterization and antimicrobial activity of rhus coriaria aqueous crude extract. Biocatal Agric Biotechnol. 2022;45:102519. https://doi.org/10.1016/j.bcab.2022.102519.

    Article  CAS  Google Scholar 

  25. Singh G, Ramadass K, Sooriyakumar P, et al. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J Control Release. 2022;343:187–206. https://doi.org/10.1016/j.jconrel.2022.01.036.

    Article  CAS  PubMed  Google Scholar 

  26. Ameixa OMCC, Rebelo J, Silva H, et al. Gall midge Baldratia salicorniae Kieffer (Diptera: Cecidomyiidae) infestation on Salicornia europaea L. induces the production of specialized metabolites with biotechnological potential. Phytochemistry. 2022;200:113207. https://doi.org/10.1016/j.phytochem.2022.113207.

    Article  CAS  PubMed  Google Scholar 

  27. Toghueo RMK, Boyom FF. Endophytic penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotech. 2020;10:107.

    Google Scholar 

  28. Todorović M, Zlatić N, Bojović B, et al. Biological properties of selected amaranthaceae halophytic species: a review. Brazilian J Pharm Sci. 2023;58.

  29. Tahghighi A, Ghafari S, Ghanavati S, et al. Repellency of aerial parts of teucrium polium L. essential oil formulation against anopheles stephensi. Int J Trop Insect Sci. 2022;42:3541–50.

    Article  Google Scholar 

  30. Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of teucrium polium L. essential oil against red flour beetle (tribolium castaneum herbst) using response surface methodology. Inf Process Agric. 2020;7:286–93.

    Google Scholar 

  31. Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med. 2014;7:956–61.

    Article  CAS  PubMed  Google Scholar 

  32. Radwan H, El-Missiry M, Al-Said W, et al. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2:127–32.

    CAS  Google Scholar 

  33. Ulukanli Z, Çenet M, Öztürk B, et al. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus’ essential oil from east mediterranean region. J Essent Oil Bear Plants. 2015;18:1500–7.

    Article  CAS  Google Scholar 

  34. Keridis LAA, Mohamed RAEH, Abutaha N, et al. Larvicidal, and cytoxicity of lepidium sativum L. seed extract against culex pipiens L.(diptera: culicidae). Turkish J Zool. 2021;45:408–15.

    Article  Google Scholar 

  35. Chaubey MK. Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). African J Agric Res. 2007;2:596–600.

    Google Scholar 

  36. Ahmad F, Sagheer M, Hammad A, et al. Insecticidal activity of some plant extracts against trogoderma granarium (E.). Agriculturists. 2013;11:103–11.

    Article  Google Scholar 

  37. Yokosuka A, Koyama Y, Mimaki Y. Chemical constituents of the underground parts of Iris florentina and their cytotoxic activity. Nat Prod Commun. 2015;10:1934578X1501000641.

    CAS  Google Scholar 

  38. Khani A, Basavand F. Chemical composition and insecticidal activity of myrtle (myrtus communis L.) essential oil against two stored-product pests. European J Med Plants. 2012;1:83–9.

    Google Scholar 

  39. Hennia A, Nemmiche S, Dandlen S, et al. Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res. 2019;31:487–545.

    Article  CAS  Google Scholar 

  40. Batiha GE‑S, Wasef L, Teibo JO, et al. Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-schmiedeberg’s Arch Pharmacol. 2022; 1–16.

  41. Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5:391–5.

    Article  PubMed  Google Scholar 

  42. Hamada H, Awad M, El-Hefny M, et al. Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). African Entomol. 2018;26:84–94.

    Article  Google Scholar 

  43. Velsankar K, Parvathy G, Mohandoss S, et al. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol. 2022;76:103799.

    Article  Google Scholar 

  44. Park I‑K, Park J‑D, Kim C‑S, et al. Insecticidal and acaricidal activities of domestic plant extracts against five major arthropod pests. Korean J Pesticide Sci. 2002;6:271–8.

    Google Scholar 

  45. El Namaky A, El Sadawy H, Al Omari F, et al. Insecticidal activity of Punica granatum L. extract for the control of Rhynchophorus ferrugineus (Olivier)(Coleoptera: Curculionidae) and some of its histological and immunological aspects. J Biopestic. 2020;13:13–20.

    Google Scholar 

  46. Hamouda AB, Mechi A, Zarred K, et al. Insecticidal activities of fruit peel extracts of pomegranate (Punica granatum) against the red flour beetle Tribolium castaneum. Tunis J Plant Prot. 2014;9:91–100.

    Google Scholar 

  47. Mishra T, Pal M, Kumar A, et al. Termiticidal activity of Punica granatum fruit rind fractions and its compounds against Microcerotermes beesoni. Ind Crops Prod. 2017;107:320–5.

    Article  CAS  Google Scholar 

  48. Chaghakaboodi Z, Nasiri J, Farahani S. Fumigation toxicity of the essential oils of ferula persica against tribolium castaneum and ephestia kuehniella. Agrotechniques Ind Crop. 2022;2:123–30.

    Google Scholar 

  49. Salehi M, Naghavi MR, Bahmankar M. A review of ferula species: biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511.

    Article  CAS  Google Scholar 

  50. Farag M, Ahmed MH, Yousef H, et al. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Z Naturforsch C. 2011;66:129–35.

    Article  CAS  PubMed  Google Scholar 

  51. Khoshraftar Z, Safekordi A, Shamel A, et al. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int J Environ Sci Technol. 2020;17:1159–70.

    Article  CAS  Google Scholar 

  52. Michaelakis A, Strongilos AT, Bouzas EA, et al. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the west nile virus vector culex pipiens. Parasitol Res. 2009;104:657–62.

    Article  PubMed  Google Scholar 

  53. Rana S, Chauhan P. Spices that heal: review on untapped potential of lesser-known spices as immunity booster during COVID-19 pandemic. Ann Phytomedicine. 2022;11:7–11.

    Google Scholar 

  54. El-Sheikh TM, Bosly HA, Shalaby N. Insecticidal and repellent activities of methanolic extract of tribulus terrestris L.(Zygophyllaceae) against the malarial vector anopheles arabiensis (diptera: culicidae). Egypt Acad J Biol Sci A Entomol. 2012;5:13–22.

    Google Scholar 

  55. Bansal S, Singh KV, Sharma S. Larvicidal potential of wild mustard (cleome viscosa) and gokhru (tribulus terrestris) against mosquito vectors in the semi-arid region of western Rajasthan. JEB. 2014;35:327.

    CAS  Google Scholar 

  56. Karimi P, Malekifard F, Tavassoli M. Medicinal plant essential oils as promising anti-varroa agents: oxidative/nitrosative screens. S Afr J Bot. 2022;148:344–51.

    Article  CAS  Google Scholar 

  57. Agalya Priyadarshini K, Murugan K, Panneerselvam C, et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using euphorbia hirta against anopheles stephensi Liston (diptera: culicidae). Parasitol Res. 2012;111:997–1006.

    Article  Google Scholar 

  58. Ahmed S, Zia A, Mehmood S, et al. Change in malate dehydrogenase and alpha amylase activities in rubus fruticosus and valeriana jatamansi treated granary weevil, sitophilus granarius. Braz J Biol. 2020;81:387–91.

    Article  Google Scholar 

  59. Torkey H, Abou-Yousef H, Azeiz AA, et al. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora. Aust J Basic Appl Sci. 2009;3:4060–6.

    CAS  Google Scholar 

  60. Ahmed M, Peiwen Q, Gu Z, et al. Insecticidal activity and biochemical composition of citrullus colocynthis, cannabis indica and artemisia argyi extracts against cabbage aphid (brevicoryne brassicae L.). Sci Rep. 2020;10:1–10.

    Google Scholar 

  61. Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci. 2016;52:229–41.

    Article  ADS  CAS  Google Scholar 

  62. Dhen N, Majdoub O, Souguir S, et al. Chemical composition and fumigant toxicity of artemisia absinthium essential oil against rhyzopertha dominica and spodoptera littoralis. Tunis J Plant Prot. 2014;9:57–65.

    Google Scholar 

  63. Fatmanur E, Çetin H, Yorgancilar M, et al. Detection of metabolite content in local bitter white lupin seeds (Lupinus Albus L.) and acaricidal and insecticidal effect of its seed extract. J Agric Sci. 2021;27:407–13.

    Google Scholar 

  64. Luo C, Li D, Wang Y, et al. Chemical composition and insecticide efficacy of essential oils from citrus medica L. var. sarcodactylis swingle against tribolium castaneum herbst in stored medicinal materials. J Essent Oil Bear Plants. 2019;22:1182–94.

    Article  CAS  Google Scholar 

  65. Pavel M, Ristić M, Stević T. Essential oils of thymus pulegioides and thymus glabrescens from romania: chemical composition and antimicrobial activity. J Serbian Chem Soc. 2010;75:27–34.

    Article  CAS  Google Scholar 

  66. Bouabida H, Dris D. Phytochemical constituents and larvicidal activity of ruta graveolens, ruta montana and artemisia absinthium hydro-methanolic extract against mosquito vectors of avian plasmodium (culiseta longiareolata). S Afr J Bot. 2022;151:504–11.

    Article  CAS  Google Scholar 

  67. Delnavazi M‑R, Hadjiakhoondi A, Delazar A, et al. Phytochemical and antioxidant investigation of the aerial parts of dorema glabrum fisch. & CA mey. Iran J Pharm Res. 2015;14:925.

    PubMed  PubMed Central  Google Scholar 

  68. Maghsoodi F, Taheri P. Efficacy of althaea officinalis leaf extract in controlling alternaria spp. pathogenic on citrus. Eur J Plant Pathol. 2021;161:799–813.

    Article  CAS  Google Scholar 

  69. Lahcene S, Taibi F, Mestar N, et al. Insecticidal effects of the olea europaea subsp. laperrinei extracts on the flour pyralid ephestia kuehniella. Cell Mol Biol (Noisy-le-grand). 2018;64:6–12.

    Article  PubMed  Google Scholar 

  70. Ibrahim HY, Abdel-Mogib M, Mostafa ME. Insecticidal activity of radish, raphanus sativus linn.(brassicaceae) roots extracts. J Plant Prot Pathol. 2020;11:53–8.

    Google Scholar 

  71. Malmir M, Serrano R, Canica M, et al. A comprehensive review on the medicinal plants from the genus asphodelus. Plants. 2018;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Majumder P, Mondal HA, Das S. Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem. 2005;53:6725–9.

    Article  CAS  PubMed  Google Scholar 

  73. Neves R, Da Camara CA. Chemical composition and acaricidal activity of the essential oils from vitex agnus-castus L.(verbenaceae) and selected monoterpenes. An Acad Bras Cienc. 2016;88:1221–33.

    Article  CAS  PubMed  Google Scholar 

  74. Hashemi SM, Rostaefar A. Insecticidal activity of essential oil from juniperus communis L. subsp. hemisphaerica (Presl) Nyman against two stored product beetles. Ecol Balk. 2014; 6.

  75. Brahmi F, Abdenour A, Bruno M, et al. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of mentha pulegium L. and mentha rotundifolia (L.) huds growing in Algeria. Ind Crops Prod. 2016;88:96–105.

    Article  CAS  Google Scholar 

  76. Fatemikia S, Abbasipour H, Saeedizadeh A. Phytochemical and acaricidal study of the galbanum, ferula gumosa boiss.(apiaceae) essential oil against tetranychus urticae koch (tetranychidae). J Essent Oil Bear Plants. 2017;20:185–95.

    Article  CAS  Google Scholar 

  77. Wang S, Li SC, Cheng FS, et al. Antifungal, repellency, and insecticidal activities of cymbopogon distans and ruta graveolens essential oils and their main chemical constituents. Chem Biodivers. 2022;19:e202200351.

    Article  CAS  PubMed  Google Scholar 

  78. Pavela R, Maggi F, Mazzara E, et al. Prolonged sublethal effects of essential oils from non-wood parts of nine conifers on key insect pests and vectors. Ind Crops Prod. 2021;168:113590. https://doi.org/10.1016/j.indcrop.2021.113590.

    Article  CAS  Google Scholar 

  79. Abbasipour H, Mahmoudvand M, Rastegar F, et al. Insecticidal activity of peganum harmala seed extract against the diamondback moth, plutella xylostella. Bull Insectology. 2010;63:259–63.

    Google Scholar 

  80. Saada I, Mahdi K, Boubekka N, et al. Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. Biochem Syst Ecol. 2022;105:104502.

    Article  CAS  Google Scholar 

  81. Pavela R, Morshedloo MR, Lupidi G, et al. The volatile oils from the oleo-gum-resins of ferula assa-foetida and ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol. 2020;140:111312.

    Article  CAS  PubMed  Google Scholar 

  82. Koorki Z, Shahidi-Noghabi S, Smagghe G, et al. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against aphis gossypii glover.(Hemiptera: Aphididae) under controlled laboratory conditions. Int J Trop Insect Sci. 2022;42:2827–33.

    Article  Google Scholar 

  83. Jemâa JMB, Tersim N, Toudert KT, et al. Insecticidal activities of essential oils from leaves of laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J Stored Prod Res. 2012;48:97–104.

    Article  Google Scholar 

  84. El-Akhal F, Guemmouh R, Ez Zoubi Y, et al. Larvicidal activity of nerium oleander against larvae west nile vector mosquito culex pipiens (diptera: culicidae). J Parasitol Res. 2015;2015.

  85. Adewumi OA, Singh V, Singh G. Chemical composition, traditional uses and biological activities of artemisia species. J Pharmacogn Phytochem. 2020;9:1124–40.

    Google Scholar 

Download references

Funding

We would like to thank Babol University of Medical Sciences for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Maedeh Rezghi, Mohammad Amrollahi-Sharifabadi. Methodology, validation, analysis, investigation, resources: Mohammad Amrollahi-Sharifabadi, Jamal Rezaei Orimi, Zahra Adabinia, Tahereh Shakeri, Zahra Aghabeiglooei. Data curation, main manuscript text, original draft preparation, editing and review: Maedeh Rezghi, Mohammad Amrollahi-Sharifabadi, Jamal Rezaei Orimi, Zahra Aghabeiglooei, Mohammad Hashemimehr. Visualization, supervision, project administration: all authors. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Maedeh Rezghi PhD.

Ethics declarations

Conflict of interest

M. Amrollahi-Sharifabadi, J. Rezaei Orimi, Z. Adabinia, T. Shakeri, Z. Aghabeiglooei, M. Hashemimehr and M. Rezghi declare that they have no competing interests.

Ethical standards

This study was registered under the ethical code IR.MUBABOL.HRI.REC.1401.040 in the Ethics Committee of Babol University of Medical Sciences.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Declaration of generative AI and AI-assisted technologies

Authors disclose that they did not use generative artificial intelligence (AI) or AI-assisted technologies during the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrollahi-Sharifabadi, M., Rezaei Orimi, J., Adabinia, Z. et al. Avicenna’s views on pest control and medicinal plants he prescribed as natural pesticides. Wien Med Wochenschr (2024). https://doi.org/10.1007/s10354-024-01034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10354-024-01034-y

Keywords

Navigation