Bone properties in osteogenesis imperfecta: what can we learn from a bone biopsy beyond histology?

Knocheneigenschaften bei Osteogenesis imperfecta: Was können wir jenseits der Histologie aus einer Knochenbiopsie lernen?


Transiliac bone biopsy samples are used to evaluate histology and bone cell activity in unclear pathological conditions. However, much additional information can be obtained from such bone samples. Using the example of osteogenesis imperfecta (OI), the current article describes how biopsy samples can be further used to study bone material characteristics including the degree of matrix mineralization, organic matrix properties, mineral particle size and bone nanoporosity. OI is a heritable collagen-related disorder that is phenotypically and genetically extremely heterogeneous. One essential finding was that OI bone is hypermineralized independently of clinical severity. Moreover, mineral particles in OI bone are of normal size or even smaller, but more densely packed than normally. Another recent finding was that in some forms of OI, collagen orientation is highly disorganized, indicating that the collagen–mineral particle network is profoundly altered in OI. These findings have contributed to the understanding of impaired bone strength in OI.


Transiliakale Beckenkammbiopsien werden bei unklarer Pathologie entnommen, um Histologie und Zellaktivität zu untersuchen. Aus solchen Proben lässt sich jedoch noch viel mehr Information gewinnen. Osteogenesis imperfecta (OI) ist eine genetisch und phänotypisch sehr heterogene Erkrankung. Mutationen betreffen Gene, die entweder für Kollagen selbst oder Proteine zur Kollagensynthese kodieren. Allen Formen von OI ist eine erhöhte Knochenbrüchigkeit gemeinsam. Die vorliegende Arbeit beschreibt, wie Knochenbiopsien eingesetzt wurden, um Veränderungen im Knochenmaterial auf die Spur zu kommen. Ein wesentliches Ergebnis war beispielsweise, dass bei OI der Mineralgehalt im Knochen unabhängig vom Schweregrad erhöht ist. Die Mineralpartikel im Kollagen sind bei OI normal groß oder sogar kleiner, aber dichter gepackt. Erst kürzlich konnte beobachtet werden, dass die Orientierung des Kollagens bei bestimmten Formen der OI hochgradig gestört ist. Diese Materialuntersuchungen weisen darauf hin, dass der Verbund aus Kollagen und Mineralpartikel im Knochenmaterial bei OI deutlich verändert ist und tragen zur Erklärung der reduzierten mechanischen Festigkeit des Materials bei.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470–81.

    CAS  Article  Google Scholar 

  2. 2.

    Fratzl-Zelman N, et al. Classification of osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):264–70.

    Article  Google Scholar 

  3. 3.

    Forlino A, et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–57.

    CAS  Article  Google Scholar 

  4. 4.

    Marini JC, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.

    Article  Google Scholar 

  5. 5.

    Etich J, et al. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal. 2020;76:109789.

    CAS  Article  Google Scholar 

  6. 6.

    Hoyer-Kuhn H, Netzer C, Semler O. Osteogenesis imperfecta: pathophysiology and treatment. Wien Med Wochenschr. 2015;165(13–14):278–84.

    Article  Google Scholar 

  7. 7.

    Etich J, et al. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr. 2020;7(1):9.

    Article  Google Scholar 

  8. 8.

    Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015;97(3):201–12.

    CAS  Article  Google Scholar 

  9. 9.

    Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol. 2006;21(4):457–62.

    Article  Google Scholar 

  10. 10.

    Misof BM, et al. Knochengewebe und -material in gesunden Menschen und bei Krankheit. J Miner Stoffwechs Muskuloskelet Erkrank. 2020;27:98–101.

    Article  Google Scholar 

  11. 11.

    Parfitt AM, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2(6):595–610.

    CAS  Article  Google Scholar 

  12. 12.

    Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85.

    CAS  Article  Google Scholar 

  13. 13.

    Roschger P, et al. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66.

    CAS  Article  Google Scholar 

  14. 14.

    Fratzl-Zelman N, et al. Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):271–7.

    Article  Google Scholar 

  15. 15.

    Fratzl-Zelman N, et al. Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone. 2009;44(6):1043–8.

    CAS  Article  Google Scholar 

  16. 16.

    Boyde A, et al. The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int. 1999;64(3):185–90.

    CAS  Article  Google Scholar 

  17. 17.

    Roschger P, et al. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int. 2008;82(4):263–70.

    CAS  Article  Google Scholar 

  18. 18.

    Morello R, et al. CRTAP is required for prolyl 3‑hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127(2):291–304.

    CAS  Article  Google Scholar 

  19. 19.

    Cabral WA, et al. Prolyl 3‑hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39(3):359–65.

    CAS  Article  Google Scholar 

  20. 20.

    Bishop N. Bone material properties in osteogenesis imperfecta. J Bone Miner Res. 2016;31(4):699–708.

    CAS  Article  Google Scholar 

  21. 21.

    Farber CR, et al. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res. 2014;29(6):1402–11.

    CAS  Article  Google Scholar 

  22. 22.

    Cheung MS, Glorieux FH, Rauch F. Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res. 2007;22(8):1181–6.

    Article  Google Scholar 

  23. 23.

    Blouin S, et al. Hypermineralization and high osteocyte lacunar density in osteogenesis Imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res. 2017;32(9):1884–92.

    CAS  Article  Google Scholar 

  24. 24.

    Hedjazi G, et al. Bone tissue in murine atypical type VI osteogenesis imperfecta has changes in vascular pores and matrix organization, plus classic OI hypermineralization. European Calcified Tissue Congress 2020; Marseille, France. 2020. digital conference.

    Google Scholar 

  25. 25.

    Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307.

    CAS  Article  Google Scholar 

  26. 26.

    Fratzl-Zelman N, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8.

    CAS  Article  Google Scholar 

  27. 27.

    Fratzl-Zelman N, et al. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone. 2015;73:233–41.

    CAS  Article  Google Scholar 

  28. 28.

    Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91.

    CAS  Article  Google Scholar 

  29. 29.

    Rinnerthaler S, et al. Scanning small angle X‑ray scattering analysis of human bone sections. Calcif Tissue Int. 1999;64(5):422–9.

    CAS  Article  Google Scholar 

  30. 30.

    Weber M, et al. Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone. 2006;39(3):616–22.

    CAS  Article  Google Scholar 

  31. 31.

    Fratzl-Zelman N, et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone. 2010;46(3):820–6.

    CAS  Article  Google Scholar 

  32. 32.

    Fratzl-Zelman N, et al. Non-lethal type VIII osteogenesis Imperfecta has elevated bone matrix mineralization. J Clin Endocrinol Metab. 2016;101(9):3516–25.

    CAS  Article  Google Scholar 

  33. 33.

    Paschalis EP, et al. Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1050–9.

    CAS  Article  Google Scholar 

Download references


The authors would like to thank colleagues and collaborators for past and ongoing exciting scientific work, in particular, Prof. Dr. Klaus Klaushofer and PD Dr. Paul Roschger, Ludwig Boltzmann-Institute of Osteology in Vienna, Austria; PD Dr. Wolfgang Wagermaier and Prof. Dr. Peter Fratzl, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Prof. Dr. Frank Rauch and Prof. Dr. Francis H. Glorieux, Shriner’s Hospital for Children and McGill University, Montreal, Canada; Dr. Joan C. Marini, Section on Heritable Disorders, of Bone and Extracellular Matrix, NICHD, NIH Bethesda, MD, USA; and Prof. Dr. Wolfgang Högler, Universitätsklinik für Kinder- und Jugendheilkunde, Kepler Universitätsklinikum Linz, Austria. Sample preparations and bone analyzes are always very carefully performed by Sonja Lueger, Petra Keplinger, Daniela Gabriel and Phaedra Messmer at the Bone laboratory of the Ludwig Boltzmann Institute for Osteology. Our work would not have been possible without the continuous support of the AUVA (Research funds of the Austrian worker’s compensation board), the OEGK (Austrian Health Insurance Fund, former WGKK) and the Ludwig Boltzmann Society.

Author information



Corresponding author

Correspondence to PD Dr. Nadja Fratzl-Zelman.

Ethics declarations

Conflict of interest

M. Mähr, S. Blouin, B.M. Misof, E.P. Paschalis, M.A. Hartmann, J. Zwerina and N. Fratzl-Zelman declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mähr, M., Blouin, S., Misof, B.M. et al. Bone properties in osteogenesis imperfecta: what can we learn from a bone biopsy beyond histology?. Wien Med Wochenschr 171, 111–119 (2021).

Download citation


  • Rare bone diseases
  • Transiliac bone biopsies
  • Histomorphometry
  • Bone material quality
  • Bone matrix mineralization


  • Seltene Knochenerkrankungen
  • Transiliakale Knochenbiopsien
  • Histomorphometrie
  • Qualität des Knochenmaterials
  • Knochenmineralisierung