Skip to main content

LDL-Cholesterin und kardiovaskuläre Ereignisse: je niedriger desto besser?

LDL-cholesterol and cardiovascular events: the lower the better?

Zusammenfassung

Seit über 30 Jahren wird die Rolle des LDL-Cholesterins in der Entstehung von kardiovaskulären Erkrankungen untersucht. Große Studien mit Statinen zeigten in diversen Settings, dass der LDL-Cholesterinspiegel mit der kardiovaskulären Ereignisrate assoziiert ist. Diese Assoziation wird häufig als „LDL-Cholesterinhypothese“ bezeichnet. Neuere Studien zu Wirkstoffen mit gänzlich anderen Wirkmechanismen bestätigten diese Assoziation und zeigten darüber hinaus, dass es einen kausalen Zusammenhang zwischen geringeren LDL-Cholesterinspiegeln und besseren kardiovaskulären Outcomes zu geben scheint und man somit vom „LDL-Cholesterinprinzip“ sprechen kann. Es ist zu erwarten, dass derzeit laufende Outcome-Studien die Annahme eines kausalen Zusammenhangs weiter untermauern werden, mit der Aussicht den Behandlern ein besseres an die Bedürfnisse der einzelnen Patienten angepasstes Armamentarium zur Behandlung von Dyslipidämien und deren Folgen in die Hand zu geben.

Summary

For over 30 years, intensive research efforts investigated the role of LDL cholesterol in the pathogenesis of cardiovascular disease. In various settings, large statin trials showed an association between LDL cholesterol levels and cardiovascular event rates. This association is often referred to as the ‚LDL cholesterol hypothesis‘. More recent trials on agents with totally different modes of action confirmed this association and indicated a causal relationship between lower LDL cholesterol levels and improved cardiovascular outcomes. It has been proposed to term this causal relationship the ‚LDL cholesterol principle‘. It is to be expected that currently ongoing outcomes trials will further support the assumption of a causal relationship and will finally offer an armamentarium to therapists that will enable individualized treatment of dyslipidemias and their sequelae.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Turley SD. Cholesterol metabolism and therapeutic targets: rationale for targeting multiple metabolic pathways. Clin Cardiol. 2004;27(6 Suppl 3):16–21.

    Article  Google Scholar 

  2. 2.

    Dietschy JM. Regulation of cholesterol metabolism in man and in other species. Klin Wochenschr. 1984;62(8):338–45.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Berg JM, Tymoczko JL, Stryer L. The complex regulation of cholesterol biosynthesis takes place at several levels. In: Biochemistry, 5. Aufl. New York: W. H. Freeman; 2002.

    Google Scholar 

  4. 4.

    Björkhem I, Meaney S. Brain Cholesterol: Long Secret Life Behind a Barrier. Arterioscler Thromb Vasc Biol. 2004;24(5):806–15.

    Article  PubMed  Google Scholar 

  5. 5.

    Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997;38(11):2173–92.

    CAS  PubMed  Google Scholar 

  6. 6.

    Gay R, Rothenburger A. Störungen des Lipoproteinstoffwechsels. In: Silbernagl S, Lang F (Hrsg.). Taschenatlas Pathophysiologie, 3. Aufl. Stuttgart: Thieme; 2009.

    Google Scholar 

  7. 7.

    Kwan BC, Kronenberg F, Beddhu S, et al. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007;18(4):1246–61.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48(7):1488–98.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):172–7.

    Article  Google Scholar 

  10. 10.

    Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282(25):18602–12.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hadi HA, Carr CS, al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280(4):C719–41.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ferrieres J. Effects on coronary atherosclerosis by targeting low-density lipoprotein cholesterol with statins. Am J Cardiovasc Drugs. 2009;9(2):109–15.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol. 2001;88(11):1291–4.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA. 2002;288(20):2569–78.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kato H, Tillotson J, Nichaman MZ, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Am J Epidemiol. 1973;97(6):372–85.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kromhout D, Menotti A, Bloemberg B, et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med. 1995;24(3):308–15.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4 S). Lancet. 1994;344(8934):1383–9.

    Google Scholar 

  19. 19.

    The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339(19):1349–57.

    Article  Google Scholar 

  20. 20.

    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

    Article  Google Scholar 

  21. 21.

    Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    la Rosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352(14):1425–35.

    Article  Google Scholar 

  23. 23.

    Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335(14):1001–9.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Cholesterol Treatment Trialists C, Fulcher J, O’Connell R, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405.

    Article  Google Scholar 

  26. 26.

    Cholesterol Treatment Trialists C, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  Google Scholar 

  27. 27.

    Cholesterol Treatment Trialists C, Kearney, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Article  Google Scholar 

  28. 28.

    Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90.

    Article  Google Scholar 

  29. 29.

    Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1:CD004816. doi:10.1002/14651858.cd004816.pub5.

    Google Scholar 

  30. 30.

    Hsia J, MacFadyen JG, Monyak J, et al. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol 〈50 mg/dl with rosuvastatin. The JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). J Am Coll Cardiol. 2011;57(16):1666–75.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Wiviott SD, Cannon CP, Morrow DA, et al. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy: a PROVE IT-TIMI 22 substudy. J Am Coll Cardiol. 2005;46(8):1411–6.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Giugliano RP, Wiviott SD, Blazing MA, et al. Safety and efficacy of long-term very low achieved LDL-C in the IMPROVE-IT trial. Eur Heart J. 2015;36(abstract supplement):2–68.

    Google Scholar 

  33. 33.

    Bangalore S, Breazna A, DeMicco DA, et al. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes: insights from the TNT trial. J Am Coll Cardiol. 2015;65(15):1539–48.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    de Vera MA, Bhole V, Burns LC, et al. Impact of statin adherence on cardiovascular disease and mortality outcomes: a systematic review. Br J Clin Pharmacol. 2014;78(4):684–98.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ford I, Murray H, McCowan C, et al. Long term safety and efficacy of lowering LDL cholesterol with Statin therapy: 20-year follow-up of west of Scotland Coronary Prevention Study. Circulation. 2016;133:1073. doi:10.1161/circulationaha.115.019014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ford I, Murray H, Packard CJ, et al. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2007;357(15):1477–86.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol. 2012;60(25):2631–9.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371(22):2072–82.

    Article  Google Scholar 

  39. 39.

    Poirier S, Mayer G. The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. Drug Des Devel Ther. 2013;7:1135–48.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–97.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kathiresan S, Myocardial Infarction Genetics C. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358(21):2299–300.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–3490a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Huijgen R, Hutten BA, Kindt I, et al. Discriminative ability of LDL-cholesterol to identify patients with familial hypercholesterolemia: a cross-sectional study in 26,406 individuals tested for genetic FH. Circ Cardiovasc Genet. 2012;5(3):354–9.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Starr B, Hadfield SG, Hutten BA, et al. Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clin Chem Lab Med. 2008;46(6):791–803.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Vuorio A, Docherty KF, Humphries SE, et al. Statin treatment of children with familial hypercholesterolemia – trying to balance incomplete evidence of long-term safety and clinical accountability: are we approaching a consensus? Atherosclerosis. 2013;226(2):315–20.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Catapano AL, Reiner Z, de Backer G, et al. ESC/EAS Guidelines for the management of dyslipidaemias the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217(1):3–46.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Tardif JC, Gregoire J, L’Allier PL, et al. Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation. 2004;110(21):3372–7.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292(18):2217–25.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Sipahi I, Nicholls SJ, Tuzcu EM, et al. Coronary atherosclerosis can regress with very intensive statin therapy. Cleve Clin J Med. 2006;73(10):937–44.

    Article  PubMed  Google Scholar 

  52. 52.

    Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354(12):1253–63.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Gao WQ, Feng QZ, Li YF, et al. Systematic study of the effects of lowering low-density lipoprotein-cholesterol on regression of coronary atherosclerotic plaques using intravascular ultrasound. BMC Cardiovasc Disord. 2014;14:60.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA. 2007;297(5):499–508.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis. 2015;242(2):490–5.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Puato M, Zambon A, Faggin E, et al. Statin treatment and carotid plaque composition: a review of clinical studies. Curr Vasc Pharmacol. 2014;12(3):518–26.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Puri R, Nissen SE, Somaratne R, et al. Impact of PCSK9 inhibition on coronary atheroma progression: rationale and design of GLAGOV (global assessment of plaque regression with a PCSK9 antibody as measured by Intravascular ultrasound). Am Heart J. 2016;176 doi:10.1016/j.ahj.2016.01.019.

    PubMed  Google Scholar 

  58. 58.

    Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Werner C, Laufs U. Moving beyond the „LDL hypothesis“. Vasa. 2015;44(5):333–40.

    Article  PubMed  Google Scholar 

  61. 61.

    Catapano AL, Ference BA. IMPROVE-IT and genetics reaffirm the causal role of LDL in cardiovascular disease. Atherosclerosis. 2015;241(2):498–501.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    la Rosa JC, Grundy SM, Kastelein JJ, et al. Safety and efficacy of atorvastatin-induced very low-density lipoprotein cholesterol levels in patients with coronary heart disease (a post hoc analysis of the treating to new targets [TNT] study). Am J Cardiol. 2007;100(5):747–52.

    Article  Google Scholar 

  64. 64.

    Amgen. Financial report for the third quarter of 2015. http://wwwext.amgen.com/media/news-releases/2015/10/amgens-third-quarter-2015-revenues-increased-14-percent-to-57-billion-and-adjusted-earnings-per-share-eps-increased-18-percent-to-272/. Accessed: 25 March 2016.

  65. 65.

    Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Cohen JC, Boerwinkle E, Mosley TH Jr., et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Lopez D. PCSK9: an enigmatic protease. Biochim Biophys Acta. 2008;1781(4):184–91.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Abifadel M, Rabes JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30(4):520–9.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94(7):2537–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Benn M, Nordestgaard BG, Grande P, et al. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55(25):2833–42.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Cunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14(5):413–9.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Mayne J, Dewpura T, Raymond A, et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin Chem. 2011;57(10):1415–23.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Kotowski IK, Pertsemlidis A, Luke A, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78(3):410–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Tibolla G, Norata GD, Artali R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): from structure-function relation to therapeutic inhibition. Nutrition, metabolism, and cardiovascular diseases. Nutr Metab Cardiovasc Dis. 2011;21(11):835–43.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005–16.

    Article  PubMed  Google Scholar 

  76. 76.

    Ahmed S, Cannon CP, Murphy SA, et al. Acute coronary syndromes and diabetes: Is intensive lipid lowering beneficial? Results of the PROVE IT-TIMI 22 trial. Eur Heart J. 2006;27(19):2323–9.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Sattar N, Preiss D, Robinson JG, et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol. 2016;4(5):403–10.

    Article  Google Scholar 

  78. 78.

    Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372(25):2387–97 (supplementary material, page 41).

  79. 79.

    Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305(24):2556–64.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Sabatine MS, Giugliano RP, Keech A, et al. Rationale and design of the further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk trial. Am Heart J. 2016;173:94–101.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Reiner Z, De Backer G, Fras Z, et al. Lipid lowering drug therapy in patients with coronary heart disease from 24 European countries – findings from the EUROASPIRE IV survey. Atherosclerosis. 2016;246:243–50.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Nicholls SJ, Lincoff A, Barter P, et al, Late-Breaking Clinical Trials II. The ACCELERATE trial: impact of the cholesteryl ester transfer protein inhibitor evacetrapib on cardiovascular outcome. 65th Annual Scientific Session and Expo of the American College of Cardiology, Chicago. 2016.

    Google Scholar 

  84. 84.

    Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Husten L. ACCELERATE puts the brake on CETP inhibition 2016. http://cardiobrief.org/2016/04/03/accelerate-puts-the-brake-on-cetp-inhibition/. Accessed: 3 May 2016.

    Google Scholar 

  87. 87.

    FDA Briefing Document (EMDAC). 2015. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM452354.pdf. Accessed: 12 February 2016.

  88. 88.

    Besseling J, van Capelleveen J, Kastelein JJ, et al. LDL cholesterol goals in high-risk patients: how low do we go and how do we get there? Drugs. 2013;73(4):293–301.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Die Autorinnen und Autoren danken Karina Grossalber, Amgen GmbH, Wien, für ihre redaktionelle Unterstützung und Faktenkontrolle.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raimund Weitgasser.

Ethics declarations

Interessenkonflikt

R. Weitgasser ist Mitglied in Advisory Boards, erhält Vortragshonorare oder Travel/Study Grants der Unternehmen: Abbott, Allergan, Amgen, Astra Zeneca, Boehringer-Ingelheim, Eli Lilly, Janssen, Medtronic, MSD, Novartis, Novo Nordisk, Pfizer, Roche, Sanofi, Schülke, Servier, Spar, Takeda. M. Ratzinger ist Mitarbeiterin der Firma Amgen GmbH, Wien. M. Hemetsberger ist freie wissenschaftliche Autorin. Ihr Beitrag zu diesem Übersichtsartikel wurde von Amgen GmbH, Wien, finanziell unterstützt. P. Siostrzonek erhält Vortragshonorare der Unternehmen Amgen, Sanofi, MSD, GSK.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weitgasser, R., Ratzinger, M., Hemetsberger, M. et al. LDL-Cholesterin und kardiovaskuläre Ereignisse: je niedriger desto besser?. Wien Med Wochenschr 168, 108–120 (2018). https://doi.org/10.1007/s10354-016-0518-2

Download citation

Schlüsselwörter

  • Kardiovaskuläre Erkrankungen
  • Dyslipidämie
  • LDL-Cholesterin-Senkung

Keywords

  • Cardiovascular disease
  • Dyslipidaemia
  • Lowering of LDL-cholesterol