Advertisement

Wiener Medizinische Wochenschrift

, Volume 168, Issue 5–6, pp 108–120 | Cite as

LDL-Cholesterin und kardiovaskuläre Ereignisse: je niedriger desto besser?

  • Raimund Weitgasser
  • Michaela Ratzinger
  • Margit Hemetsberger
  • Peter Siostrzonek
übersicht
  • 306 Downloads

Zusammenfassung

Seit über 30 Jahren wird die Rolle des LDL-Cholesterins in der Entstehung von kardiovaskulären Erkrankungen untersucht. Große Studien mit Statinen zeigten in diversen Settings, dass der LDL-Cholesterinspiegel mit der kardiovaskulären Ereignisrate assoziiert ist. Diese Assoziation wird häufig als „LDL-Cholesterinhypothese“ bezeichnet. Neuere Studien zu Wirkstoffen mit gänzlich anderen Wirkmechanismen bestätigten diese Assoziation und zeigten darüber hinaus, dass es einen kausalen Zusammenhang zwischen geringeren LDL-Cholesterinspiegeln und besseren kardiovaskulären Outcomes zu geben scheint und man somit vom „LDL-Cholesterinprinzip“ sprechen kann. Es ist zu erwarten, dass derzeit laufende Outcome-Studien die Annahme eines kausalen Zusammenhangs weiter untermauern werden, mit der Aussicht den Behandlern ein besseres an die Bedürfnisse der einzelnen Patienten angepasstes Armamentarium zur Behandlung von Dyslipidämien und deren Folgen in die Hand zu geben.

Schlüsselwörter

Kardiovaskuläre Erkrankungen Dyslipidämie LDL-Cholesterin-Senkung 

LDL-cholesterol and cardiovascular events: the lower the better?

Summary

For over 30 years, intensive research efforts investigated the role of LDL cholesterol in the pathogenesis of cardiovascular disease. In various settings, large statin trials showed an association between LDL cholesterol levels and cardiovascular event rates. This association is often referred to as the ‚LDL cholesterol hypothesis‘. More recent trials on agents with totally different modes of action confirmed this association and indicated a causal relationship between lower LDL cholesterol levels and improved cardiovascular outcomes. It has been proposed to term this causal relationship the ‚LDL cholesterol principle‘. It is to be expected that currently ongoing outcomes trials will further support the assumption of a causal relationship and will finally offer an armamentarium to therapists that will enable individualized treatment of dyslipidemias and their sequelae.

Keywords

Cardiovascular disease Dyslipidaemia Lowering of LDL-cholesterol 

Notes

Danksagung

Die Autorinnen und Autoren danken Karina Grossalber, Amgen GmbH, Wien, für ihre redaktionelle Unterstützung und Faktenkontrolle.

Interessenkonflikt

R. Weitgasser ist Mitglied in Advisory Boards, erhält Vortragshonorare oder Travel/Study Grants der Unternehmen: Abbott, Allergan, Amgen, Astra Zeneca, Boehringer-Ingelheim, Eli Lilly, Janssen, Medtronic, MSD, Novartis, Novo Nordisk, Pfizer, Roche, Sanofi, Schülke, Servier, Spar, Takeda. M. Ratzinger ist Mitarbeiterin der Firma Amgen GmbH, Wien. M. Hemetsberger ist freie wissenschaftliche Autorin. Ihr Beitrag zu diesem Übersichtsartikel wurde von Amgen GmbH, Wien, finanziell unterstützt. P. Siostrzonek erhält Vortragshonorare der Unternehmen Amgen, Sanofi, MSD, GSK.

Literatur

  1. 1.
    Turley SD. Cholesterol metabolism and therapeutic targets: rationale for targeting multiple metabolic pathways. Clin Cardiol. 2004;27(6 Suppl 3):16–21.CrossRefGoogle Scholar
  2. 2.
    Dietschy JM. Regulation of cholesterol metabolism in man and in other species. Klin Wochenschr. 1984;62(8):338–45.CrossRefPubMedGoogle Scholar
  3. 3.
    Berg JM, Tymoczko JL, Stryer L. The complex regulation of cholesterol biosynthesis takes place at several levels. In: Biochemistry, 5. Aufl. New York: W. H. Freeman; 2002.Google Scholar
  4. 4.
    Björkhem I, Meaney S. Brain Cholesterol: Long Secret Life Behind a Barrier. Arterioscler Thromb Vasc Biol. 2004;24(5):806–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997;38(11):2173–92.PubMedGoogle Scholar
  6. 6.
    Gay R, Rothenburger A. Störungen des Lipoproteinstoffwechsels. In: Silbernagl S, Lang F (Hrsg.). Taschenatlas Pathophysiologie, 3. Aufl. Stuttgart: Thieme; 2009.Google Scholar
  7. 7.
    Kwan BC, Kronenberg F, Beddhu S, et al. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol. 2007;18(4):1246–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48(7):1488–98.CrossRefPubMedGoogle Scholar
  9. 9.
    Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):172–7.CrossRefGoogle Scholar
  10. 10.
    Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282(25):18602–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Hadi HA, Carr CS, al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280(4):C719–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrieres J. Effects on coronary atherosclerosis by targeting low-density lipoprotein cholesterol with statins. Am J Cardiovasc Drugs. 2009;9(2):109–15.CrossRefPubMedGoogle Scholar
  14. 14.
    Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol. 2001;88(11):1291–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA. 2002;288(20):2569–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Kato H, Tillotson J, Nichaman MZ, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Am J Epidemiol. 1973;97(6):372–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Kromhout D, Menotti A, Bloemberg B, et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med. 1995;24(3):308–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4 S). Lancet. 1994;344(8934):1383–9.Google Scholar
  19. 19.
    The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339(19):1349–57.CrossRefGoogle Scholar
  20. 20.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.CrossRefGoogle Scholar
  21. 21.
    Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.CrossRefPubMedGoogle Scholar
  22. 22.
    la Rosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352(14):1425–35.CrossRefGoogle Scholar
  23. 23.
    Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335(14):1001–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Cholesterol Treatment Trialists C, Fulcher J, O’Connell R, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405.CrossRefGoogle Scholar
  26. 26.
    Cholesterol Treatment Trialists C, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.CrossRefGoogle Scholar
  27. 27.
    Cholesterol Treatment Trialists C, Kearney, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.CrossRefGoogle Scholar
  28. 28.
    Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90.CrossRefGoogle Scholar
  29. 29.
    Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1:CD004816. doi: 10.1002/14651858.cd004816.pub5.Google Scholar
  30. 30.
    Hsia J, MacFadyen JG, Monyak J, et al. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol 〈50 mg/dl with rosuvastatin. The JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). J Am Coll Cardiol. 2011;57(16):1666–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Wiviott SD, Cannon CP, Morrow DA, et al. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy: a PROVE IT-TIMI 22 substudy. J Am Coll Cardiol. 2005;46(8):1411–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Giugliano RP, Wiviott SD, Blazing MA, et al. Safety and efficacy of long-term very low achieved LDL-C in the IMPROVE-IT trial. Eur Heart J. 2015;36(abstract supplement):2–68.Google Scholar
  33. 33.
    Bangalore S, Breazna A, DeMicco DA, et al. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes: insights from the TNT trial. J Am Coll Cardiol. 2015;65(15):1539–48.CrossRefPubMedGoogle Scholar
  34. 34.
    de Vera MA, Bhole V, Burns LC, et al. Impact of statin adherence on cardiovascular disease and mortality outcomes: a systematic review. Br J Clin Pharmacol. 2014;78(4):684–98.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ford I, Murray H, McCowan C, et al. Long term safety and efficacy of lowering LDL cholesterol with Statin therapy: 20-year follow-up of west of Scotland Coronary Prevention Study. Circulation. 2016;133:1073. doi: 10.1161/circulationaha.115.019014.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ford I, Murray H, Packard CJ, et al. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2007;357(15):1477–86.CrossRefPubMedGoogle Scholar
  37. 37.
    Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol. 2012;60(25):2631–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371(22):2072–82.CrossRefGoogle Scholar
  39. 39.
    Poirier S, Mayer G. The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. Drug Des Devel Ther. 2013;7:1135–48.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–97.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kathiresan S, Myocardial Infarction Genetics C. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358(21):2299–300.CrossRefPubMedGoogle Scholar
  42. 42.
    Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–3490a.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Huijgen R, Hutten BA, Kindt I, et al. Discriminative ability of LDL-cholesterol to identify patients with familial hypercholesterolemia: a cross-sectional study in 26,406 individuals tested for genetic FH. Circ Cardiovasc Genet. 2012;5(3):354–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Starr B, Hadfield SG, Hutten BA, et al. Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clin Chem Lab Med. 2008;46(6):791–803.CrossRefPubMedGoogle Scholar
  45. 45.
    Vuorio A, Docherty KF, Humphries SE, et al. Statin treatment of children with familial hypercholesterolemia – trying to balance incomplete evidence of long-term safety and clinical accountability: are we approaching a consensus? Atherosclerosis. 2013;226(2):315–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Catapano AL, Reiner Z, de Backer G, et al. ESC/EAS Guidelines for the management of dyslipidaemias the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217(1):3–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.CrossRefPubMedGoogle Scholar
  49. 49.
    Tardif JC, Gregoire J, L’Allier PL, et al. Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation. 2004;110(21):3372–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292(18):2217–25.CrossRefPubMedGoogle Scholar
  51. 51.
    Sipahi I, Nicholls SJ, Tuzcu EM, et al. Coronary atherosclerosis can regress with very intensive statin therapy. Cleve Clin J Med. 2006;73(10):937–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354(12):1253–63.CrossRefPubMedGoogle Scholar
  53. 53.
    Gao WQ, Feng QZ, Li YF, et al. Systematic study of the effects of lowering low-density lipoprotein-cholesterol on regression of coronary atherosclerotic plaques using intravascular ultrasound. BMC Cardiovasc Disord. 2014;14:60.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA. 2007;297(5):499–508.CrossRefPubMedGoogle Scholar
  55. 55.
    Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis. 2015;242(2):490–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Puato M, Zambon A, Faggin E, et al. Statin treatment and carotid plaque composition: a review of clinical studies. Curr Vasc Pharmacol. 2014;12(3):518–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Puri R, Nissen SE, Somaratne R, et al. Impact of PCSK9 inhibition on coronary atheroma progression: rationale and design of GLAGOV (global assessment of plaque regression with a PCSK9 antibody as measured by Intravascular ultrasound). Am Heart J. 2016;176 doi: 10.1016/j.ahj.2016.01.019.PubMedGoogle Scholar
  58. 58.
    Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.CrossRefPubMedGoogle Scholar
  60. 60.
    Werner C, Laufs U. Moving beyond the „LDL hypothesis“. Vasa. 2015;44(5):333–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Catapano AL, Ference BA. IMPROVE-IT and genetics reaffirm the causal role of LDL in cardiovascular disease. Atherosclerosis. 2015;241(2):498–501.CrossRefPubMedGoogle Scholar
  62. 62.
    Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.CrossRefPubMedGoogle Scholar
  63. 63.
    la Rosa JC, Grundy SM, Kastelein JJ, et al. Safety and efficacy of atorvastatin-induced very low-density lipoprotein cholesterol levels in patients with coronary heart disease (a post hoc analysis of the treating to new targets [TNT] study). Am J Cardiol. 2007;100(5):747–52.CrossRefGoogle Scholar
  64. 64.
  65. 65.
    Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cohen JC, Boerwinkle E, Mosley TH Jr., et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.CrossRefPubMedGoogle Scholar
  67. 67.
    Lopez D. PCSK9: an enigmatic protease. Biochim Biophys Acta. 2008;1781(4):184–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Abifadel M, Rabes JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30(4):520–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94(7):2537–43.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Benn M, Nordestgaard BG, Grande P, et al. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55(25):2833–42.CrossRefPubMedGoogle Scholar
  71. 71.
    Cunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14(5):413–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Mayne J, Dewpura T, Raymond A, et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin Chem. 2011;57(10):1415–23.CrossRefPubMedGoogle Scholar
  73. 73.
    Kotowski IK, Pertsemlidis A, Luke A, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78(3):410–22.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tibolla G, Norata GD, Artali R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): from structure-function relation to therapeutic inhibition. Nutrition, metabolism, and cardiovascular diseases. Nutr Metab Cardiovasc Dis. 2011;21(11):835–43.CrossRefPubMedGoogle Scholar
  75. 75.
    Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005–16.CrossRefPubMedGoogle Scholar
  76. 76.
    Ahmed S, Cannon CP, Murphy SA, et al. Acute coronary syndromes and diabetes: Is intensive lipid lowering beneficial? Results of the PROVE IT-TIMI 22 trial. Eur Heart J. 2006;27(19):2323–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Sattar N, Preiss D, Robinson JG, et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol. 2016;4(5):403–10.CrossRefGoogle Scholar
  78. 78.
    Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372(25):2387–97 (supplementary material, page 41).Google Scholar
  79. 79.
    Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.CrossRefPubMedGoogle Scholar
  80. 80.
    Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305(24):2556–64.CrossRefPubMedGoogle Scholar
  81. 81.
    Sabatine MS, Giugliano RP, Keech A, et al. Rationale and design of the further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk trial. Am Heart J. 2016;173:94–101.CrossRefPubMedGoogle Scholar
  82. 82.
    Reiner Z, De Backer G, Fras Z, et al. Lipid lowering drug therapy in patients with coronary heart disease from 24 European countries – findings from the EUROASPIRE IV survey. Atherosclerosis. 2016;246:243–50.CrossRefPubMedGoogle Scholar
  83. 83.
    Nicholls SJ, Lincoff A, Barter P, et al, Late-Breaking Clinical Trials II. The ACCELERATE trial: impact of the cholesteryl ester transfer protein inhibitor evacetrapib on cardiovascular outcome. 65th Annual Scientific Session and Expo of the American College of Cardiology, Chicago. 2016.Google Scholar
  84. 84.
    Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.CrossRefPubMedGoogle Scholar
  85. 85.
    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.CrossRefPubMedGoogle Scholar
  86. 86.
    Husten L. ACCELERATE puts the brake on CETP inhibition 2016. http://cardiobrief.org/2016/04/03/accelerate-puts-the-brake-on-cetp-inhibition/. Accessed: 3 May 2016.Google Scholar
  87. 87.
  88. 88.
    Besseling J, van Capelleveen J, Kastelein JJ, et al. LDL cholesterol goals in high-risk patients: how low do we go and how do we get there? Drugs. 2013;73(4):293–301.CrossRefPubMedGoogle Scholar
  89. 89.
    Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Raimund Weitgasser
    • 1
    • 5
  • Michaela Ratzinger
    • 2
  • Margit Hemetsberger
    • 3
  • Peter Siostrzonek
    • 4
  1. 1.Abteilung für Innere Medizin/Kompetenzzentrum DiabetesPrivatklinik Wehrle-Diakonissen SalzburgSalzburgÖsterreich
  2. 2.Amgen GmbHWienÖsterreich
  3. 3.hemetsberger medical servicesWienÖsterreich
  4. 4.Abteilung für Innere Medizin II: Kardiologie, Krankenhaus der Barmherzigen Schwestern LinzLinzÖsterreich
  5. 5.Paracelsus Medizinische Privatuniversität SalzburgSalzburgÖsterreich

Personalised recommendations