Skip to main content
Log in

Molecular mechanisms of pharmacological doses of ascorbate on cancer cells

Über die molekularen Wirkmechanismen pharmakologischer Dosierungen von Vitamin C gegenüber Tumorzellen

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Abstract

Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials.

Zusammenfassung

Die intravenöse Hochdosis-Vitamin C Therapie wird seit über 30 Jahren in der Komplementärmedizin als unterstützende Behandlung von Krebspatienten angewendet. Pharmakologische Dosen von Vitamin C im Millimolarbereich wirken in vitro und in vivo selektiv toxisch auf Krebszellen. Diese Krebszellen-tötenden Eigenschaften werden durch Serumkomponenten katalysiert und durch H2O2 und Ascorbyl-Radikale vermittelt, so dass Vitamin C dosisabhängig im Tumorgewebe als pro-oxidatives Molekül fungiert und nicht als Radikalfänger. Weiterhin werden die pharmakologischen Eigenschaften von Vitamin C durch die HIF-1 Signaltransduktionskaskade und den O2-Partialdruck maßgeblich beeinflusst und wirken zusätzlich auf epigenetischer Ebene über Modifizierung der DNA-Methylierung und Induktion von Tumor-supprimierenden microRNAs. Aus dem heutigen Verständnis des komplexen molekularen Wirkmechanismus von Vitamin C gegenüber Krebszellen erschließt sich die Notwendigkeit der Optimierung des Therapieschemas in geeigneten Tiermodellen (z. B. in Kombination mit hyperbarer Sauerstofftherapie oder gewebegängigen O2-Liberatoren), um die rasche Übertragung einer effektiven Hochdosis-Vitamin C Therapie für Krebspatienten in die Klinik zu ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73:3685–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75:4538–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Creagan ET, Moertel CG, O’Fallon JR, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301:687–90.

    Article  CAS  PubMed  Google Scholar 

  4. Moertel CG, Fleming TR, Creagan ET, et al. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312:137–41.

    Article  CAS  PubMed  Google Scholar 

  5. Padayatty SJ, Levine M. Reevaluation of ascorbate in cancer treatment: emerging evidence, open minds and serendipity. J Am Coll Nutr. 2000;19:423–5.

    Article  CAS  PubMed  Google Scholar 

  6. Mikirova N, Casciari J, Riordan N, et al. Clinical experience with intravenous administration of ascorbic acid: achievable levels in blood for different states of inflammation and disease in cancer patients. J Transl Med. 2013;11:191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102:13604–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105:11105–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Du J, Martin SM, Levine M, et al. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res. 2010;16:509–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Esme H, Cemek M, Sezer M, et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2008;13:112–6.

    Article  PubMed  Google Scholar 

  11. Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47:32–40.

    Article  CAS  PubMed  Google Scholar 

  12. Stephenson CM, Levin RD, Spector T, et al. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72:139–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.

    Article  CAS  PubMed  Google Scholar 

  14. Levine M, Wang Y, Padayatty SJ, et al. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA. 2001;98:9842–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kuiper C, Vissers MC, Hicks KO. Pharmacokinetic modelling of ascorbate diffusion through normal and tumour tissue. Free Radic Biol Med. 2014;77:340–52.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 2007;104:8749–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hoffer LJ, Levine M, Assouline S, et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19:1969–74.

    Article  CAS  PubMed  Google Scholar 

  18. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.

    Article  CAS  PubMed  Google Scholar 

  19. Tomasetti M, Santarelli L, Alleva R, et al. Redox-active and redox-silent compounds: synergistic therapeutics in cancer. Curr Med Chem. 2015;22:552–68.

    Article  CAS  PubMed  Google Scholar 

  20. McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate. Front Oncol. 2014;4:249.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mojić M, Bogdanović Pristov J, Maksimović-Ivanić D, et al. Extracellular iron diminishes anticancer effects of vitamin C: an in vitro study. Sci Rep. 2014;4:5955.

    PubMed Central  PubMed  Google Scholar 

  22. Sinnberg T, Noor S, Venturelli S, et al. The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med. 2014;18:530–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Espey MG, Chen P, Chalmers B, et al. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011;50:1610–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Clarke JD, Hsu A, Yu Z, et al. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res. 2011;55:999–1009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Berger A, Venturelli S, Kallnischkies M, et al. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem. 2013;24:977–85.

    Article  CAS  PubMed  Google Scholar 

  26. Venturelli S, Berger A, Böcker A, et al. Resveratrol as a Pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS One. 2013;8:e73097.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8:1409–20.

    Article  CAS  PubMed  Google Scholar 

  28. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24R–9R.

    Article  CAS  PubMed  Google Scholar 

  29. Sato F, Tsuchiya S, Meltzer SJ, et al. MicroRNAs and epigenetics. FEBS J. 2011;278:1598–609.

    Article  CAS  PubMed  Google Scholar 

  30. Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011;38:724–33.

    Article  CAS  PubMed  Google Scholar 

  31. Vissers MC, Kuiper C, Dachs GU. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer. Biochem Soc Trans. 2014;42:945–51.

    Article  CAS  PubMed  Google Scholar 

  32. Venturelli S, Sinnberg TW, Berger A, et al. Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front Oncol. 2014;4:227.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Busch C, Krochmann J, Drews U. The chick embryo as an experimental system for melanoma cell invasion. PLoS One. 2013;8:e53970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Schriek G, Oppitz M, Busch C, et al. Human SK-Mel 28 melanoma cells resume neural crest cell migration after transplantation into the chick embryo. Melanoma Res. 2005;15:225–34.

    Article  PubMed  Google Scholar 

  35. Busch C, Drews U, Garbe C, et al. Neural crest cell migration of mouse B16-F1 melanoma cells transplanted into the chick embryo is inhibited by the BMP-antagonist noggin. Int J Oncol. 2007;31:1367–78.

    PubMed  Google Scholar 

  36. Antonov AV, Knight RA, Melino G, et al. MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ. 2013;20:367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Casciari JJ, Riordan HD, Miranda-Massari JR, et al. Effects of high dose ascorbate administration on L-10 tumor growth in guinea pigs. P R Health Sci J. 2005;24:145–50.

    PubMed  Google Scholar 

  38. Abdel-Latif MM, Raouf AA, Sabra K, et al. Vitamin C enhances chemosensitization of esophageal cancer cells in vitro. J Chemother. 2005;17:539–49.

    Article  CAS  PubMed  Google Scholar 

  39. Hong SW, Jin DH, Hahm ES, et al. Ascorbate (vitamin C) induces cell death through the apoptosis-inducing factor in human breast cancer cells. Oncol Rep. 2007;18:811–5.

    CAS  PubMed  Google Scholar 

  40. Ohtani S, Iwamaru A, Deng W, et al. Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 2007;67:6293–303.

    Article  CAS  PubMed  Google Scholar 

  41. Sun YX, Zheng QS, Li G, et al. Mechanism of ascorbic acid-induced reversion against malignant phenotype in human gastric cancer cells. Biomed Environ Sci. 2006;19:385–91.

    CAS  PubMed  Google Scholar 

  42. Bram S, Froussard P, Guichard M, et al. Vitamin C preferential toxicity for malignant melanoma cells. Nature. 1980;284:629–31.

    Article  CAS  PubMed  Google Scholar 

  43. Meadows GG, Pierson HF, Abdallah RM. Ascorbate in the treatment of experimental transplanted melanoma. Am J Clin Nutr. 1991;54:1284 S–91 S.

    Google Scholar 

  44. Hahm E, Jin DH, Kang JS, et al. The molecular mechanisms of vitamin C on cell cycle regulation in B16F10 murine melanoma. J Cell Biochem. 2007;102:1002–10.

    Article  CAS  PubMed  Google Scholar 

  45. Cha J, Roomi MW, Ivanov V, et al. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp Oncol. 2011;33:226–30.

    CAS  PubMed  Google Scholar 

  46. Cha J, Roomi MW, Ivanov V, et al. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int J Oncol. 2013;42:55–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Campbell EJ, Vissers MC, Bozonet S, et al. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo-/- mice. Cancer Med. 2015;4:303–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Varga JM, Airoldi L. Inhibition of transplantable melanoma tumor development in mice by prophylactic administration of Ca-ascorbate. Life Sci. 1983;32:1559–64.

    Article  CAS  PubMed  Google Scholar 

  49. Kang JS, Cho D, Kim YI, et al. L-ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8-independent pathway. Cancer Immunol Immunother. 2003;52:693–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lin SY, Lai WW, Chou CC, et al. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. Melanoma Res. 2006;16:509–19.

    Article  PubMed  Google Scholar 

  51. Verrax J, Stockis J, Tison A, et al. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem Pharmacol. 2006;72:671–80.

    Article  CAS  PubMed  Google Scholar 

  52. Verrax J, Vanbever S, Stockis J, et al. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells. Int J Cancer. 2007;120:1192–7.

    Article  CAS  PubMed  Google Scholar 

  53. Harakeh S, Diab-Assaf M, Khalife JC, et al. Ascorbic acid induces apoptosis in adult T-cell leukemia. Anticancer Res. 2007;27:289–98.

    CAS  PubMed  Google Scholar 

  54. Park S, Han SS, Park CH, et al. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol. 2004;36:2180–95.

    Article  CAS  PubMed  Google Scholar 

  55. Welsh JL, Wagner BA, van’t Erve TJ, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71:765–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Riordan HD, Casciari JJ, González MJ, et al. A pilot clinical study of continuous intravenous ascorbate in terminal cancer patients. P R Health Sci J. 2005;24:269–76.

    PubMed  Google Scholar 

  57. Ma Y, Chapman J, Levine M, et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6:222ra18.

    Article  PubMed  Google Scholar 

  58. Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patient’s health-related quality of life after high dose vitamin C administration. J Korean Med Sci. 2007;22:7–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schleich T, Rodemeister S, Venturelli S, et al. Decreased plasma ascorbate levels in stage IV melanoma patients. Metab Nutr Oncol 2013. doi:10.1055/s-0033-1348256.

  60. Campbell EJ, Dachs GU. Current limitations of murine models in oncology for ascorbate research. Front Oncol. 2014;4:282.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Trachootham, D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  62. Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe? Cell Cycle. 2009;8:3291–6.

    Article  CAS  PubMed  Google Scholar 

  63. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  64. Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9:1221–35.

    Article  CAS  PubMed  Google Scholar 

  65. Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer—a review. Target Oncol. 2012;7:233–42.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Kuiper C, Molenaar IG, Dachs GU, et al. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res. 2010;70:5749–58.

    Article  CAS  PubMed  Google Scholar 

  67. Kuiper C, Dachs GU, Currie MJ, et al. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med. 2014;69:308–17.

    Article  CAS  PubMed  Google Scholar 

  68. Rumsey SC, Kwon O, Xu GW, et al. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997;272:18982–9.

    Article  CAS  PubMed  Google Scholar 

  69. Kuiper C, Dachs GU, Munn D, et al. Increased tumor ascorbate is associated with extended disease-free survival and decreased hypoxia-inducible factor-1 activation in human colorectal cancer. Front Oncol. 2014;4:10.

    PubMed Central  PubMed  Google Scholar 

  70. Wilson MK, Baguley BC, Wall C, et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac J Clin Oncol. 2014;10:22–37.

    Article  PubMed  Google Scholar 

  71. Zouboulis CC, Garbe C, Krasagakis K, et al. A fluorometric rapid microassay to identify anti-proliferative compounds for human melanoma cells in vitro. Melanoma Res. 1991;1:91–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the DFG SFB 773: “Understanding and overcoming drug resistance of solid tumors” to C. Busch. S. Venturelli was supported by the Innovation Grant of the University Tuebingen, Else Uebelmesser Foundation and German Childhood Cancer Foundation (DKS). T. W. Sinnberg was supported by the fortuene program of the University Clinic Tuebingen (2198-0-0). C. Busch and S. Venturelli received a research grant from the Wissenschaftsfoerderung der Deutschen Brauwirtschaft e. V. (B103) and Pascoe pharmazeutische Praeparate GmbH.

Conflict of interest

The sponsors had no involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the manuscript and in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Busch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturelli, S., Sinnberg, T., Niessner, H. et al. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells. Wien Med Wochenschr 165, 251–257 (2015). https://doi.org/10.1007/s10354-015-0356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-015-0356-7

Keywords

Schüsselwörter

Navigation