Wiener Medizinische Wochenschrift

, Volume 165, Issue 11–12, pp 251–257 | Cite as

Molecular mechanisms of pharmacological doses of ascorbate on cancer cells

  • Sascha Venturelli
  • Tobias W. Sinnberg
  • Heike Niessner
  • Christian BuschEmail author
main topic


Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials.


Ascorbate Vitamin C Cancer Melanoma Epigenetics 

Über die molekularen Wirkmechanismen pharmakologischer Dosierungen von Vitamin C gegenüber Tumorzellen


Die intravenöse Hochdosis-Vitamin C Therapie wird seit über 30 Jahren in der Komplementärmedizin als unterstützende Behandlung von Krebspatienten angewendet. Pharmakologische Dosen von Vitamin C im Millimolarbereich wirken in vitro und in vivo selektiv toxisch auf Krebszellen. Diese Krebszellen-tötenden Eigenschaften werden durch Serumkomponenten katalysiert und durch H2O2 und Ascorbyl-Radikale vermittelt, so dass Vitamin C dosisabhängig im Tumorgewebe als pro-oxidatives Molekül fungiert und nicht als Radikalfänger. Weiterhin werden die pharmakologischen Eigenschaften von Vitamin C durch die HIF-1 Signaltransduktionskaskade und den O2-Partialdruck maßgeblich beeinflusst und wirken zusätzlich auf epigenetischer Ebene über Modifizierung der DNA-Methylierung und Induktion von Tumor-supprimierenden microRNAs. Aus dem heutigen Verständnis des komplexen molekularen Wirkmechanismus von Vitamin C gegenüber Krebszellen erschließt sich die Notwendigkeit der Optimierung des Therapieschemas in geeigneten Tiermodellen (z. B. in Kombination mit hyperbarer Sauerstofftherapie oder gewebegängigen O2-Liberatoren), um die rasche Übertragung einer effektiven Hochdosis-Vitamin C Therapie für Krebspatienten in die Klinik zu ermöglichen.


Ascorbat Vitamin C Krebs Melanom Epigenetik 



This work was supported by grants from the DFG SFB 773: “Understanding and overcoming drug resistance of solid tumors” to C. Busch. S. Venturelli was supported by the Innovation Grant of the University Tuebingen, Else Uebelmesser Foundation and German Childhood Cancer Foundation (DKS). T. W. Sinnberg was supported by the fortuene program of the University Clinic Tuebingen (2198-0-0). C. Busch and S. Venturelli received a research grant from the Wissenschaftsfoerderung der Deutschen Brauwirtschaft e. V. (B103) and Pascoe pharmazeutische Praeparate GmbH.

Conflict of interest

The sponsors had no involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the manuscript and in the decision to submit the manuscript for publication.


  1. 1.
    Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73:3685–9.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75:4538–42.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Creagan ET, Moertel CG, O’Fallon JR, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301:687–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Moertel CG, Fleming TR, Creagan ET, et al. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312:137–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Padayatty SJ, Levine M. Reevaluation of ascorbate in cancer treatment: emerging evidence, open minds and serendipity. J Am Coll Nutr. 2000;19:423–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Mikirova N, Casciari J, Riordan N, et al. Clinical experience with intravenous administration of ascorbic acid: achievable levels in blood for different states of inflammation and disease in cancer patients. J Transl Med. 2013;11:191.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102:13604–9.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105:11105–9.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Du J, Martin SM, Levine M, et al. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res. 2010;16:509–20.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Esme H, Cemek M, Sezer M, et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2008;13:112–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47:32–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Stephenson CM, Levin RD, Spector T, et al. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72:139–46.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Levine M, Wang Y, Padayatty SJ, et al. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA. 2001;98:9842–6.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kuiper C, Vissers MC, Hicks KO. Pharmacokinetic modelling of ascorbate diffusion through normal and tumour tissue. Free Radic Biol Med. 2014;77:340–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 2007;104:8749–54.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hoffer LJ, Levine M, Assouline S, et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19:1969–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Tomasetti M, Santarelli L, Alleva R, et al. Redox-active and redox-silent compounds: synergistic therapeutics in cancer. Curr Med Chem. 2015;22:552–68.PubMedCrossRefGoogle Scholar
  20. 20.
    McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate. Front Oncol. 2014;4:249.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Mojić M, Bogdanović Pristov J, Maksimović-Ivanić D, et al. Extracellular iron diminishes anticancer effects of vitamin C: an in vitro study. Sci Rep. 2014;4:5955.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Sinnberg T, Noor S, Venturelli S, et al. The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med. 2014;18:530–41.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Espey MG, Chen P, Chalmers B, et al. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011;50:1610–9.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Clarke JD, Hsu A, Yu Z, et al. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res. 2011;55:999–1009.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Berger A, Venturelli S, Kallnischkies M, et al. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem. 2013;24:977–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Venturelli S, Berger A, Böcker A, et al. Resveratrol as a Pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS One. 2013;8:e73097.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8:1409–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24R–9R.PubMedCrossRefGoogle Scholar
  29. 29.
    Sato F, Tsuchiya S, Meltzer SJ, et al. MicroRNAs and epigenetics. FEBS J. 2011;278:1598–609.PubMedCrossRefGoogle Scholar
  30. 30.
    Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011;38:724–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Vissers MC, Kuiper C, Dachs GU. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer. Biochem Soc Trans. 2014;42:945–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Venturelli S, Sinnberg TW, Berger A, et al. Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front Oncol. 2014;4:227.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Busch C, Krochmann J, Drews U. The chick embryo as an experimental system for melanoma cell invasion. PLoS One. 2013;8:e53970.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Schriek G, Oppitz M, Busch C, et al. Human SK-Mel 28 melanoma cells resume neural crest cell migration after transplantation into the chick embryo. Melanoma Res. 2005;15:225–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Busch C, Drews U, Garbe C, et al. Neural crest cell migration of mouse B16-F1 melanoma cells transplanted into the chick embryo is inhibited by the BMP-antagonist noggin. Int J Oncol. 2007;31:1367–78.PubMedGoogle Scholar
  36. 36.
    Antonov AV, Knight RA, Melino G, et al. MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ. 2013;20:367.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Casciari JJ, Riordan HD, Miranda-Massari JR, et al. Effects of high dose ascorbate administration on L-10 tumor growth in guinea pigs. P R Health Sci J. 2005;24:145–50.PubMedGoogle Scholar
  38. 38.
    Abdel-Latif MM, Raouf AA, Sabra K, et al. Vitamin C enhances chemosensitization of esophageal cancer cells in vitro. J Chemother. 2005;17:539–49.PubMedCrossRefGoogle Scholar
  39. 39.
    Hong SW, Jin DH, Hahm ES, et al. Ascorbate (vitamin C) induces cell death through the apoptosis-inducing factor in human breast cancer cells. Oncol Rep. 2007;18:811–5.PubMedGoogle Scholar
  40. 40.
    Ohtani S, Iwamaru A, Deng W, et al. Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 2007;67:6293–303.PubMedCrossRefGoogle Scholar
  41. 41.
    Sun YX, Zheng QS, Li G, et al. Mechanism of ascorbic acid-induced reversion against malignant phenotype in human gastric cancer cells. Biomed Environ Sci. 2006;19:385–91.PubMedGoogle Scholar
  42. 42.
    Bram S, Froussard P, Guichard M, et al. Vitamin C preferential toxicity for malignant melanoma cells. Nature. 1980;284:629–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Meadows GG, Pierson HF, Abdallah RM. Ascorbate in the treatment of experimental transplanted melanoma. Am J Clin Nutr. 1991;54:1284 S–91 S.Google Scholar
  44. 44.
    Hahm E, Jin DH, Kang JS, et al. The molecular mechanisms of vitamin C on cell cycle regulation in B16F10 murine melanoma. J Cell Biochem. 2007;102:1002–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Cha J, Roomi MW, Ivanov V, et al. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp Oncol. 2011;33:226–30.PubMedGoogle Scholar
  46. 46.
    Cha J, Roomi MW, Ivanov V, et al. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int J Oncol. 2013;42:55–64.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Campbell EJ, Vissers MC, Bozonet S, et al. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo-/- mice. Cancer Med. 2015;4:303–14.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Varga JM, Airoldi L. Inhibition of transplantable melanoma tumor development in mice by prophylactic administration of Ca-ascorbate. Life Sci. 1983;32:1559–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Kang JS, Cho D, Kim YI, et al. L-ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8-independent pathway. Cancer Immunol Immunother. 2003;52:693–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Lin SY, Lai WW, Chou CC, et al. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. Melanoma Res. 2006;16:509–19.PubMedCrossRefGoogle Scholar
  51. 51.
    Verrax J, Stockis J, Tison A, et al. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem Pharmacol. 2006;72:671–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Verrax J, Vanbever S, Stockis J, et al. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells. Int J Cancer. 2007;120:1192–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Harakeh S, Diab-Assaf M, Khalife JC, et al. Ascorbic acid induces apoptosis in adult T-cell leukemia. Anticancer Res. 2007;27:289–98.PubMedGoogle Scholar
  54. 54.
    Park S, Han SS, Park CH, et al. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol. 2004;36:2180–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Welsh JL, Wagner BA, van’t Erve TJ, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71:765–75.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Riordan HD, Casciari JJ, González MJ, et al. A pilot clinical study of continuous intravenous ascorbate in terminal cancer patients. P R Health Sci J. 2005;24:269–76.PubMedGoogle Scholar
  57. 57.
    Ma Y, Chapman J, Levine M, et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6:222ra18.PubMedCrossRefGoogle Scholar
  58. 58.
    Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patient’s health-related quality of life after high dose vitamin C administration. J Korean Med Sci. 2007;22:7–11.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Schleich T, Rodemeister S, Venturelli S, et al. Decreased plasma ascorbate levels in stage IV melanoma patients. Metab Nutr Oncol 2013. doi:10.1055/s-0033-1348256.Google Scholar
  60. 60.
    Campbell EJ, Dachs GU. Current limitations of murine models in oncology for ascorbate research. Front Oncol. 2014;4:282.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Trachootham, D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe? Cell Cycle. 2009;8:3291–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRefGoogle Scholar
  64. 64.
    Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9:1221–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer—a review. Target Oncol. 2012;7:233–42.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Kuiper C, Molenaar IG, Dachs GU, et al. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res. 2010;70:5749–58.PubMedCrossRefGoogle Scholar
  67. 67.
    Kuiper C, Dachs GU, Currie MJ, et al. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med. 2014;69:308–17.PubMedCrossRefGoogle Scholar
  68. 68.
    Rumsey SC, Kwon O, Xu GW, et al. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997;272:18982–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Kuiper C, Dachs GU, Munn D, et al. Increased tumor ascorbate is associated with extended disease-free survival and decreased hypoxia-inducible factor-1 activation in human colorectal cancer. Front Oncol. 2014;4:10.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Wilson MK, Baguley BC, Wall C, et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac J Clin Oncol. 2014;10:22–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Zouboulis CC, Garbe C, Krasagakis K, et al. A fluorometric rapid microassay to identify anti-proliferative compounds for human melanoma cells in vitro. Melanoma Res. 1991;1:91–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Sascha Venturelli
    • 1
  • Tobias W. Sinnberg
    • 2
  • Heike Niessner
    • 2
  • Christian Busch
    • 2
    Email author
  1. 1.Department of Internal Medicine IMedical University HospitalTuebingenGermany
  2. 2.Division of Dermatologic Oncology, Department of Dermatology and AllergologyUniversity Hospital of TuebingenTuebingenGermany

Personalised recommendations