Skip to main content

Advertisement

Log in

Cathepsin K-Inhibitoren: präklinische und klinische Daten

Cathepsin K antagonists: preclinical and clinical data

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Cathepsin K ist eine Cysteinproteinase und somit ein essentielles Enzym in der Degradation von Kollagen Typ I. Es wird fast ausschließlich in Osteoklasten exprimiert. Aufgrund des physiologischen Mechanismus stellt diese Protease einen pharmakologischen Angriffspunkt für die Entwicklung neuer Medikamente in der Osteologie dar. In den letzten Jahrzehnten wurde intensiv daran geforscht, hochwirksame, selektive und oral einnehmbare Cathepsin K-Inhibitoren zu entwickeln. Im Gegensatz zu Balicatib und Relacatib, deren Weiterentwicklung wegen kutaner Nebenwirkungen bei relativ geringer Spezifität eingestellt wurde, wendete sich die Forschung den spezifischeren Cathepsin K-Inhibitoren Odanacatib (ODN) und ONO-5334 zu. So hebt Odanacatib bei postmenopausalen Frauen sehr deutlich die Knochenmineraldichte und hemmt die Knochenresorption. Als Voraussetzung für die Weiterentwicklung konnte in einer Langzeituntersuchung die Sicherheit und Wirksamkeit des Medikaments bestätigt werden. Jedoch nehmen nach dessen Absetzen Knochenresorption und Knochenmasseverlust wieder zu. Eine Phase III Frakturpräventionsstudie an postmenopausalen Frauen mit Osteoporose befindet sich derzeit in der Endphase.

Summary

Cathepsin K, a cysteine protease, is an essential enzyme in degradation of collagen type I. Since cathepsin K is relatively specific to osteoclasts, it represents a promising candidate for drug development. In the past decades, efforts have been made in developing highly potent, selective and orally applicable cathepsin K inhibitors. In contrast to balicatib and relacatib, whose drug development programmes were stopped due to cutaneous side-effects related to limited drug specificity, the more specific cathepsin K inhibitors odanacatib (ODN) and ONO-5334 have entered clinical trials. Odanacatib progressively increases bone mineral density (BMD) and decreases bone resorption markers in postmenopausal women with low BMD. Its clinical efficacy and safety was confirmed by several clinical studies but indicates that odanacatib is characterized by a resolution-of-effect with increases in bone resorption and rapid decreases in BMD following treatment discontinuation. A phase III fracture prevention study in postmenopausal women with osteoporosis is currently in the final phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bromme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs. 2009;18(5):585–600.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bromme D, Okamoto K, Wang BB, et al. Human cathepsin O2, a matrix protein-degrading cysteineprotease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem. 1996 Jan 26;271(4):2126–32.

    Article  CAS  PubMed  Google Scholar 

  3. Bossard MJ, Tomaszek TA, Thompson SK, et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996;271(21):12517–24.

    Article  CAS  PubMed  Google Scholar 

  4. Kafienah W, Bromme D, Buttle DJ, et al. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triplehelix. Biochem J. 1998;331(3):727–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Garnero P, Borel O, Byrjalsen I, Ferreras M, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998;273(48):32347–52.

    Article  CAS  PubMed  Google Scholar 

  6. Goto T, Yamaza T, Tanaka T. Cathepsins in the osteoclast. J Electron Microsc (Tokyo). 2003;52(6):551–8.

    Article  CAS  Google Scholar 

  7. Gelb BD, Shi GP, Chapman HA, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  8. Saftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998;95(23):13453–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999;14(10):1654–63.

    Article  CAS  PubMed  Google Scholar 

  10. Rood JA, Van Horn S, Drake FH, et al. Genomic organization and chromosome localization of the human cathepsin K gene (CTSK). Genomics. 1997;41(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  11. Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie. 2008;90(2):208–26.

    Article  CAS  PubMed  Google Scholar 

  12. Xia L, Kilb J, Wex H, et al. Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem. 1999;380(6):679–87.

    Article  CAS  PubMed  Google Scholar 

  13. Sassi ML, Eriksen H, Risteli L, et al. Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone. 2000;26(4):367–73.

    Article  CAS  PubMed  Google Scholar 

  14. Mano H, Yuasa T, Kameda T, et al. Mammalian mature osteoclasts as estrogen target cells. Biochem Biophys Res Commun. 1996;223(3):637–42.

    Article  CAS  PubMed  Google Scholar 

  15. Furuyama N, Fujisawa Y. Regulation of collagenolytic cysteine protease synthesis by estrogen in osteoclasts. Steroids. 2000;65(7):371–8.

    Article  CAS  PubMed  Google Scholar 

  16. Parikka V, Lehenkari P, Sassi ML, et al. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology. 2001;142(12):5371–8.

    Article  CAS  PubMed  Google Scholar 

  17. Fujisaki K, Tanabe N, Suzuki N, et al. Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci. 2007;80(14):1311–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Q, Jia Y, Xiao Y. Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun. 2009;380(4):721–3.

    Article  CAS  PubMed  Google Scholar 

  19. Falgueyret JP, Desmarais S, Oballa R, et al. Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem. 2005;48(24):7535–43.

    Article  CAS  PubMed  Google Scholar 

  20. Desmarais S, Black WC, Oballa R, et al. Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol. 2008;73(1):147–56.

    Article  CAS  PubMed  Google Scholar 

  21. Peroni A, Zini A, Braga V, et al. Drug-induced morphea: report of a case induced by balicatib and review of the literature. J Am Acad Dermatol. 2008;59(1):125–9.

    Article  PubMed  Google Scholar 

  22. Kumar S, Dare L, Vasko-Moser JA, et al. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone. 2007;40(1):122–31.

    Article  CAS  PubMed  Google Scholar 

  23. Perez-Castrillon JL, Pinacho F, De Luis D, et al. Odanacatib, a new drug for the treatment of osteoporosis: review of the results in postmenopausal women. J Osteoporos. 2010 : 401581. doi:10.4061/2010/401581.

  24. Gauthier JY, Chauret N, Cromlish W, Desmarais S, et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008;18(3):923–8.

    Article  CAS  PubMed  Google Scholar 

  25. Costa AG, Cusano NE, Silva BC, et al. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol. 2011;7:447–56. doi:10.1038/nrrheum.2011.77.

    Article  CAS  PubMed  Google Scholar 

  26. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stoch SA, Zajic S, Stone J, et al. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther. 2009;86(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  28. Bone HG, McClung MR, Roux C, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25(5):937–47.

    PubMed  Google Scholar 

  29. Nagase S, Ohyama M, Hashimoto Y, et al. Pharmacodynamic effects on biochemical markers of bone turnover and pharmacokinetics of the cathepsin K Inhibitor, ONO-5334, in an ascending multiple-dose, phase 1 study. Br J Clin Pharmacol. 2012;74(6):959–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Eisman JA, Bone HG, Hosking DJ, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26(2):242–51.

    Article  CAS  PubMed  Google Scholar 

  31. Greenspan SL, Emkey RD, Bone HG, et al. Significant differential effects of alendronate, estrogen, or combination therapy on the rate of boneloss after discontinuation of treatmentof postmenopausal osteoporosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2002;137(11):875–83.

    Article  CAS  PubMed  Google Scholar 

  32. Sornay-Rendu E, Garnero P, Munoz F, et al. Effect of withdrawal of hormone replacement therapy on bonemass and bone turnover: the OFELY study. Bone. 2003;33(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  33. Miller PD, Bolognese MA, Lewiecki EM, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  34. Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med. 2005;353(6):555–65.

    Article  CAS  PubMed  Google Scholar 

  35. Bauer DC. Discontinuation of odanacatib and other osteoporosis treatments: here today and gone tomorrow? J Bone Miner Res. 2011;26(2):239–41. doi:10.1002/jbmr.335.

    Article  PubMed  Google Scholar 

  36. Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  37. Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    Article  CAS  PubMed  Google Scholar 

  38. Anderson M, Gendrano I, Liu C, Jeffers S, et al. Odanacatib in older men. J Clin Endocrinol Metab. 2014;99(2):552–60.

    Article  CAS  PubMed  Google Scholar 

  39. Bonnick S, Villiers T, Odio A, et al. Odanacatib in women previously treated with alendronate. J Clin Endocrinol Metab. 2013;98(12):4727–35.

    Article  CAS  PubMed  Google Scholar 

  40. Langdahl B, Binkley N, Bone H, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27(11):2251–8. doi:10.1177/1759720×13490860.

    Article  CAS  PubMed  Google Scholar 

  41. Cusick T, Chen CM, Pennypacker BL, et al., Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res. 2012;27(3):524–37.

    Article  CAS  PubMed  Google Scholar 

  42. Jayakar RY, Cabal A, Szumiloski J, et al. Evaluation of high-resolution peripheral quantitative computed tomography, finite element analysis and biomechanical testing in a pre-clinical model of osteoporosis: a study with odanacatib treatment in the ovariectomized adult rhesus monkey. Bone. 2012;50(6):1379–88. doi:10.1016/j.bone.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  43. Masarachia PJ, Pennypacker BL, Pickarski M, et al. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2012;27(3):509–23. doi:10.1016/j.bone.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  44. Cheung AM, Majumdar S, Brixen KR, et al. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture and estimated bone strength. J Bone Miner Res. 2014;29:1786–94. doi:10.1002/jbmr.2194

    Article  CAS  PubMed  Google Scholar 

  45. Engelke K, Fürst T, Dardzinski B, et al. Odanacatib treatment affects trabecular and cortical bone in the femur of postmenopausal women – results of a 2-year placebo-controlled trial. J Bone Miner Res. 2014 June 4. doi: 10.1002/jbmr.2292

Download references

Interessenkonflikt

M. Gamsjäger und H. Resch geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Gamsjäger MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamsjäger, M., Resch, H. Cathepsin K-Inhibitoren: präklinische und klinische Daten. Wien Med Wochenschr 165, 65–70 (2015). https://doi.org/10.1007/s10354-014-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-014-0336-3

Schlüsselwörter

Keywords

Navigation