Skip to main content

Mechanismen und Risikofaktoren für Typ 1 Nahrungsmittelallergien: Die Rolle der gastrischen Verdauung

Mechanisms and risk factors for type 1 food allergies: the role of gastric digestion

Zusammenfassung

Die sogenannten wahren Nahrungsmittelallergene sind verdauungsstabile Proteine, welche über das gastrointestinale Epithel in intakter Form aufgenommen werden und auf diesem Weg sensibilisieren und systemische Symptome auslösen können. Verdauungslabile Allergene andererseits führen laut Klassifikation durch ihre Kreuzreaktivität mit inhalativen Allergenen zu lokalen Symptomen. Unsere rezenten Studien zeigten jedoch, dass auch verdauungslabile Allergene ein hohes Sensibilisierungs-Potential haben, wenn die Magenverdauung gehemmt wird. Eine Erhöhung des gastrischen pH-Wertes aufgrund von Magensäure-Suppression durch Protonenpumpen-Hemmer, Sucralfat oder Antazida, hemmen den Verdau von Proteinen und führen so zur Sensibilisierung und allergischen Reaktionen sowohl im Tiermodell als auch bei Patienten. Weiters erhöht eine Inhibierung der Magenverdauung bei bereits allergischen Patienten das Risiko für eine anaphylaktische Reaktion.

Obwohl auch andere Faktoren, wie beispielsweise Sphingolipid-Metaboliten, eine Rolle bei der Entstehung von Nahrungsmittelallergien spielen, hat der Magen ohne Zweifel eine wichtige Barrierefunktion gegen Nahrungsmittelallergiene.

Summary

True food allergens are considered as digestion stable proteins, which are absorbed through the gastrointestinal epithelium in an intact form leading to sensitization and causing systemic symptoms. According to classifications, allergens, which are digestion-labile, cause local symptoms by their cross-reactivity towards inhalative allergens. Our recent studies revealed that digestion labile allergens can also have sensitizing capacity if gastric digestion is hindered. The increase of gastric pH via acid-suppression by proton pump inhibitors, sucralfate or antacids, interferes with protein digestion, and leads to sensitization and allergic reaction in mouse models as well as in human patients. Furthermore, the inhibition of digestion increases the risk for anaphylactic responses in sensitized individuals.

Even though also other factors, such as sphingolipid metabolites, are associated with the development of food allergies, it is without any doubt that the stomach has an important gate keeping function against food allergies.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Bannon GA. What makes a food protein an allergen? Curr Allergy Asthma Rep. 2004;4(1):43–6.

    PubMed  Article  Google Scholar 

  2. 2.

    Nowak-Wegrzyn A. Food allergy to proteins. Nestle Nutr Workshop Ser Pediatr Program. 2007;59:17–31 (discussion 31–6).

    PubMed  Google Scholar 

  3. 3.

    Vieths S, Scheurer S, Ballmer-Weber B. Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci. 2002;964:47–68.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Aalberse RC. Structural biology of allergens. J Allergy Clin Immunol. 2000;106:228–38.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Webber CM, England RW. Oral allergy syndrome: a clinical, diagnostic, and therapeutic challenge. Ann Allergy Asthma Immunol. 2010;104(2):101–8 (quiz 109–10, 117).

    PubMed  Article  Google Scholar 

  6. 6.

    Directive 2003//EC of the European Parliament and of the Council of amending Directive 2000/13/EC as regards indication of the ingredients present in foodstuffs. http://www.europarl.eu.int/commonpositions/2003/pdf/c5-0080-03_en.pdf. Zugegriffen: 25. Sept. 2006.

  7. 7.

    Evaluation of genetically modified foods. http://www.who.int/foodsafety/publications/biotech/en/ec_jan2001.pdf. Zugegriffen: 18. Okt. 2012.

  8. 8.

    Food safety: regulating plant agricultural biotechnology in the United States. http://www.4uth.gov.ua/usa/english/tech/biotech/foodsafe.htm. Zugegriffen: 18. Okt. 2012.

  9. 9.

    Fu TJ, Abbott UR, Hatzos C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid-a comparative study. J Agric Food Chem. 2002;50(24):7154–60

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Untersmayr E, Schöll I, Swoboda I, et al. Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in Balb/c mice. J Allergy Clin Immunol. 2003;112:616–23.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Schöll I, Untersmayr E, Bakos N, et al. Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut allergens in BALB/c mice and humans. Am J Clin Nutr. 2005;81:154–60.

    PubMed  Google Scholar 

  12. 12.

    Untersmayr E, Jensen-Jarolim E. The effect of gastric digestion on food allergy. Curr Opin Allergy Clin Immunol. 2006;6:214–9.

    PubMed  Article  Google Scholar 

  13. 13.

    Untersmayr E, Poulsen LK, Platzer MH, et al. The effects of gastric digestion on codfish allergenicity. J Allergy Clin Immunol. 2005;115:377–82.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Untersmayr E, Bakos N, Schöll I, et al. Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB J. 2005;19:656–8.

    PubMed  CAS  Google Scholar 

  15. 15.

    Untersmayr E, Jensen-Jarolim E. Anti-azide Therapie und verdauungslabile Allergene. Allergologie. 2005;28(4):134–42.

    Google Scholar 

  16. 16.

    Diesner SC, Knittelfelder R, Krishnamurthy D, et al. Dose-dependent food allergy induction against ovalbumin under acid-suppression: a murine food allergy model. Immunol Lett. 2008;121(1):45–51.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Samloff IM. Peptic ulcer: the many proteinases of aggression. Gastroenterology. 1989;96:586–95.

    PubMed  CAS  Google Scholar 

  18. 18.

    Avery GB, Randolph JG, Weaver T. Gastric acidity in the first day of life. Pediatrics. 1966;37:1005–7.

    PubMed  CAS  Google Scholar 

  19. 19.

    Ebers DW, Gibbs GE, Smith DI. Gastric acidity on the first day of life. Pediatrics. 1956;18:800–2.

    PubMed  CAS  Google Scholar 

  20. 20.

    Agunod M, Yamaguchi N, Lopez R, et al. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis. 1969;14:400–14.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Deren JS. Development of structure and function in the fetal and newborn stomach. Am J Clin Nutr. 1971;24:144–59.

    PubMed  CAS  Google Scholar 

  22. 22.

    Segawa K, Nakazawa S, Tsukamoto Y, et al. Chronic alcohol abuse leads to gastric atrophy and decreased gastric secretory capacity: a histological and physiological study. Am J Gastroenterol. 1988;83(4):373–9.

    PubMed  CAS  Google Scholar 

  23. 23.

    Brunner R, Wallmann J, Szalai K, et al. Aluminium per se and in the anti-acid drug sucralfate promotes sensitization via the oral route. Allergy. 2009;64(6):890–7.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Brunner R, Wallmann J, Szalai K, et al. The impact of aluminium in acid-suppressing drugs on the immune response of BALB/c mice. Clin Exp Allergy. 2007;37(10):1566–73.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Pali-Schöll I, Herzog R, Wallmann J, et al. Antacids and dietary supplements with an influence on the gastric pH increase the risk for food sensitization. Clin Exp Allergy. 2010;40(7):1091–8.

    PubMed  Article  Google Scholar 

  26. 26.

    Diesner SC, Olivera A, Dillahunt S, et al. Sphingosine-kinase 1 and 2 contribute to oral sensitization and effector phase in a mouse model of food allergy. Immunol Lett. 2012;141(2):210–9.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Untersmayr E., Ellinger A., Beil WJ., et al. Eosinophils accumulate in the gastric mucosa of food allergic mice. Int Arch Allergy Immunol. 2004;135(1)1–2.

  28. 28.

    Pali-Schöll I, Yildirim AO, Ackermann U, et al. Anti-acids lead to immunological and morphological changes in the intestine of BALB/c mice similar to human food allergy. Exp Toxicol Pathol. 2008;60(4–5):337–45.

    Article  Google Scholar 

  29. 29.

    Untersmayr E, Diesner SC, Bramswig KH, et al. Characterization of intrinsic and extrinsic risk factors for celery allergy in immunosenescence. Mech Ageing Dev. 2008;129(3):120–8.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Miller R. The aging immune system: primer and prospectus. Science. 1996;273:70–4.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124(6):1549–55.

    PubMed  Article  Google Scholar 

  32. 32.

    Wöhrl S, Stingl G. Underestimation of allergies in elderly patients. Lancet North Am Ed. 2004;363:249.

    Article  Google Scholar 

  33. 33.

    Richter JE. Gastroesophageal reflux disease during pregnancy. Gastroenterol Clin North Am. 2003;32(1):235–61.

    PubMed  Article  Google Scholar 

  34. 34.

    Schöll I, Ackermann U, Ozdemir C, et al. Anti-ulcer treatment during pregnancy induces food allergy in mouse mothers and a Th2-bias in their offspring. FASEB J. 2007;21(4):1264–70.

    PubMed  Article  Google Scholar 

  35. 35.

    Bakos N, Schöll I, Szalai K, et al. Risk assessment in elderly for sensitization to food and respiratory allergens. Immunol Lett. 2006;107:15–21.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Hsu RY, Lin MS, Chou MH, et al. Medication use characteristics in an ambulatory elderly population in Taiwan. Ann Pharmacother. 1997;31(3):308–14.

    PubMed  CAS  Google Scholar 

  37. 37.

    Pali-Schöll I, Jensen-Jarolim E. Anti-acid medication as a risk factor for food allergy. Allergy. 2011;66(4):469–77.

    PubMed  Article  Google Scholar 

  38. 38.

    Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol. 2008;121(6):1301–8 (quiz 1309–10).

    PubMed  Article  Google Scholar 

  39. 39.

    Untersmayr E, Vestergaard H, Malling HJ, et al. Incomplete digestion of codfish represents a risk factor for anaphylaxis in patients with allergy. J Allergy Clin Immunol. 2007;119(3):711–7.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry. 2001;40(16):4893–903.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4(5):397–407.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Olivera A, Eisner C, Kitamura Y, et al. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J Clin Invest. 2010;120(5):1429–40.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Hait NC, Oskeritzian CA, Paugh SW, et al. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta. 2006;1758(12):2016–26.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Yunoki K, Ogawa T, Ono J, et al. Analysis of sphingolipid classes and their contents in meals. Biosci Biotechnol Biochem. 2008;72(1):222–5.

    PubMed  Article  CAS  Google Scholar 

Download references

Danksagung

Unterstützt von den Projekten des Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) P21577 P21884 sowie SFB F 4606-B19.^ und P21884.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Untersmayr MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diesner, S., Pali-Schöll, I., Jensen-Jarolim, E. et al. Mechanismen und Risikofaktoren für Typ 1 Nahrungsmittelallergien: Die Rolle der gastrischen Verdauung. Wien Med Wochenschr 162, 513–518 (2012). https://doi.org/10.1007/s10354-012-0154-4

Download citation

Schlüsselwörter

  • Nahrungsmittelallergie
  • Gastrische Verdauung
  • Antazida
  • Anti-Ulkus Therapeutika

Keywords

  • Food allergy
  • Gastric digestion
  • Antacids
  • Anti-ulcus drugs