Wiener Medizinische Wochenschrift

, Volume 163, Issue 1–2, pp 1–12 | Cite as

Onychomycosis: modern diagnostic and treatment approaches

  • Georgi Tchernev
  • Plamen Kolev Penev
  • Pietro Nenoff
  • Liliya Georgieva Zisova
  • José Carlos Cardoso
  • Teodora Taneva
  • Gabriele Ginter-Hanselmayer
  • Julian Ananiev
  • Maya Gulubova
  • Reni Hristova
  • Desislava Nocheva
  • Claudio Guarneri
  • G. Martino
  • Nobuo Kanazawa
review

Summary

The medical term onychomycosis should be understood as chronic infection of the nails caused by a fungus. The most common causative agents are the dermatophytes and Candida species. The less common are certain types of moulds (nondermatophyte moulds or NDMs). In approximately 60–80 % of the cases, onychomycosis is due to dermatophytes. Among dermatophytes, the most often isolated causative pathogen is Trichophyton (T.) rubrum. Other common species are T. interdigitale (formerly T. mentagrophytes), Epidermophyton floccosum, and T. tonsurans. The most significant yeasts causing onychomycosis are Candida albicans and Candida parapsilosis. Predisposing factors for onychomycosis include mainly diseases such as diabetes mellitus, peripheral vascular arterial disease, chronic venous insufficiency, polyneuropathies of diverse etiologies, and immunosuppression, e.g., myeloproliferative diseases (such as lymphoma and paraproteinemia), HIV/AIDS, etc. Other factors facilitating the fungal infection are frequent trauma in professional sportsmen, often accompanied by excessive perspiration. The diagnostic methods that are often applied in different dermatologic departments and ambulatory units are also different. This precludes the creation of a unified diagnostic algorithm that could be used everywhere as a possible standard. In most of the cases, the method of choice depends on the specialist’s individual experience. The therapeutic approach depends mostly on the fungal organism identified by the dermatologist or mycologist. This review hereby includes the conventional as well as the newest and most reliable and modern methods used for the identification of the pathogens causing onychomycosis. Moreover, detailed information is suggested, about the choice of therapeutic scheme in case whether dermatophytes, moulds, or yeasts have been identified as causative agents. A thorough discussion of the schemes and duration of the antifungal therapy in certain groups of patients have been included.

Keywords

Onychomycosis Trichophyton rubrum MALDI-TOF MS Uniplex-PCR-ELISA-Test Antifungal therapy Terbinafine Itraconazole Laser treatment 

Onychomykose: Moderne Diagnostik und Behandlungsansätze

Zusammenfassung

Der medizinische Terminus Onychomykose steht für eine chronische Infektion des Nagelapparates durch einen Pilz. Zu den häufigsten verursachenden Erregern zählen Dermatophyten sowie Candida-Arten. Zahlenmäßig weniger bedeutsam sind bestimmte Schimmelpilze (nicht-Dermatophyten-Schimmelpilze oder engl. non-dermatophyte moulds). In etwa 60–80 % der Fälle wird die Onychmoykose jedoch durch Dermatophyten verursacht. Der am häufigsten isolierte Dermatophyt ist Trichophyton (T.) rubrum, weitere relevante Spezies für eine Onychomykose sind T. interdigitale (früher T. mentagrophytes, Epidermophyton floccosum) und T. tonsurans. Die wichtigsten, eine Onychomykose verursachenden Hefepilze sind Candida albicans und Candida parapsilosis. Zu den disponierenden Faktoren, die eine Onychomykose begünstigen, zählen vor allem Stoffwechselerkrankungen, wie Diabetes mellitus, aber auch Gefäßerkrankungen, wie periphere arterielle Verschlusskrankheit, chronisch-venöse Insuffizienz, Polyneuropathien unterschiedlicher Ätiologie und immunsupprimierende Krankheiten, z. B. myeloproliferative Neoplasien (wie z. B. Lymphome und Paraproteinämien), HIV/AIDS, etc. Weitere Faktoren, die der Entstehung einer mykotischen Nagelinfektion Vorschub leisten, sind lokale Traumen bei Profi-oder Leistungssportlern, oft vergesellschaftet mit starker Hyperhidrose. In dermatologischen Kliniken und Praxen kommen verschiedene diagnostischen Methoden zur Anwendung Ein einheitlicher diagnostischer Algorithmus wäre wünschenswert, nach wie vor ist jedoch die persönliche Erfahrung des Untersuchers entscheidend für die eingesetzten Methoden. Entscheidend ist, dass der gewählte therapeutische Ansatz im Wesentlichen vom nachgewiesenen Erreger abhängt. In dieser Übersicht wird die konventionelle Diagnostik von Onychomykosen dargestellt. Außerdem wird auf moderne und neu entwickelte labordiagnostische Methoden, die zum direkten Nachweis und zur Identifizierung der nachgewiesenen Erreger der Onychomykose Einzug in die Dermatologie und Mikrobiologie gefunden haben, eingegangen. Darüber hinaus wird auf die Auswahl der erfolgversprechendsten lokalen und systemischen Therapieformen erläutert, abhängig davon, ob Dermatophyten, Hefepilze oder Schimmelpilze nachweisbar waren. Die verschiedenen Schemata der Onychomykosetherapie für bestimmte Patientenkollektive werden ausführlich dargestellt.

Schlüsselwörter

Onychomykose Trichophyton rubrum MALDI-TOF Massenspektroskopie Uniplex-PCR-ELISA-Test Antimykotische Therapie Terbinafin Fluconazol Itraconazol Laserbehandlung 

References

  1. 1.
    Gupta AK, Jain HC, Lynde CW. Prevalence and epidemiology of onychomycosis in patients visiting physicians’ offices: a multicenter Canadian survey of 15,000 patients. J Am Acad Dermatol. 2000;43:244–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R et al. A large scale North American study of fungal isolated from nails; the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43:641–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Hamnerius N, Berglund J, Faergemann J. Pedal dermatophyte infection in psoriasis. Br J Dermatol. 2004;150:1125–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Burzykowski T, Molenberghs G, Abeck D, et al. High prevalence of foot disease in Europe; results of the Ahilese project. Mycoses. 2003;46:496–505.CrossRefPubMedGoogle Scholar
  5. 5.
    Wolff K, Johnson RA, Suurmond D. Fitzpatrick’s color atlas and synopsis of clinical dermatology. 5th ed. New York: McGraw Hill; 2005. p. 1004.Google Scholar
  6. 6.
    Shemer A, Nathansohn N, Kaplan B, Trau H. Toenail abnormalities and onychomycosis in chronic venous insufficiency of the legs: should we treat? J Eur Acad Dermatol Venereol. 2008;22:279–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Gupta AK, Gupta MA, Summerbell RC, et al. The epidemiology of onychomycosis: possible role of smoking and peripheral arterial disease. J Eur Acad Dermatol Venereol. 2000;14:466–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Ginter-Hanselmayer G, Weger W, Smolle J. Onychomycosis: a new emerging infectious disease in childhood population and adolescents. Report on treatment experience with terbinafine and itraconazole in 36 patients. J Eur Acad Dermatol Venereol. 2008;22:470–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Zisova L, Valtchev V, Sotiriou E, Gospodinov D, Mateev G. Оnychomycosis in patients with psoriasis—a multicenter study. Mycoses. 2011;55(2):143–7.PubMedGoogle Scholar
  10. 10.
    Leibovici V, Heirshko K, Ingber A, Westerman M, Leviatan-Strauss N, Hoshberg M. Increased prevalence of onychomycosis among psoriatic patients in Israel. Acta Derm Venereol. 2008;88:31–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Gupta AK, Lynde CW, Jain HC, et al. A higher prevalence of onychomycosis in psoriatics compared with non-psoriatics: a multicenter study. Br J Dermatol. 1997;136:786–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Bristow IR, Spruce MC. Fungal foot infection, cellulitis and diabetes: a review. Diabet Med. 2009;26:548–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Fletcher CL, Hay RJ, Smeeton NC. Observer agreement in recording the clinical signs of nail disease and the accuracy of a clinical diagnosis of fungal and non-fungal nail disease. Br J Dermatol. 2003;148:558–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Zaias N, Tosti A, Rebell G, et al. Autosomal dominant pattern of distal subungual onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol. 1996;34:302–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Svejgaard EL, Nilsson J. Onychomycosis in Denmark: prevalence of fungal nail infection in general practice. Mycoses. 2004;47:131–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Roujeau JC, Sigurgeirsson B, Korting HC, Kerl H, Paul C. Chronic dermatomycoses of the foot as risk factors for acute bacterial cellulitis of the leg: a case-control study. Dermatology. 2004;209:301–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Tchernev G, Cardoso JC, Ali MM, Patterson JW. Primary onychomycosis with granulomatous Tinea faciei. Braz J Infect Dis. 2010;14:546–7.PubMedGoogle Scholar
  18. 18.
    Nenoff P, Mügge C, Herrmann J, Keller U. Tinea faciei incognito due to Trichophyton rubrum as a result of autoinoculation from onychomycosis. Mycoses. 2007;50 Suppl 2:20–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Nenoff P, Wetzig T, Gebauer S, et al. Tinea barbae et faciei durch Trichophyton rubrum. Akt Dermatol. 1999;25:392–6.Google Scholar
  20. 20.
    Szepietowski JC, Reich A. Stigmatisation in onychomycosis patients: a population-based study. Мycoses. 2009;52:343–9.CrossRefGoogle Scholar
  21. 21.
    Effendy I, Lecha M, Feuilhade de Chauvin M, Di Chiacchio N, Baran R. European onychomycosis observatory. Epidemiology and clinical classification of onychomycosis. J Eur Acad Dermatol Venereol. 2005;19 Suppl 1:8–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Guibal F, Baran R, Duhard E, Feuilhade de Chauvin M. Epidemiology and management of onychomycosis in private dermatological practice in France. Ann Dermatol Venereol. 2008;135:561–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Shemer A, Trau H, Davidovici B, Grunwald MH, Amichai B. Nail sampling in onychomycosis: comparative study of curettage from three sites of the infected nail. J Dtsch Dermatol Ges. 2007;5:1108–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Nenoff P, Ginter-Hanselmayer G, Tietz HJ. Fungal nail infections—an update: part 2—from the causative agent to diagnosis—conventional and molecular procedures. Hautarzt. 2012;63:130–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Weinberg JM, Koestenblatt EK, Tutrone WD, Tishler HR, Najarian L. Comparison of diagnostic methods in the evaluation of onychomycosis. J Am Acad Dermatol 2003;49:193–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Nenoff P, Ginter-Hanselmayer G, Tietz HJ. Fungal nail infections—an update: part 1—prevalence, epidemiology, predisposing conditions, and differential diagnosis. Hautarzt. 2012;63:30–8.CrossRefPubMedGoogle Scholar
  27. 27.
    El Fari M, Tietz H-J, Presber W, Sterry W, Gräser Y. Development of an oligonucleotide probe specific for Trichophyton rubrum. Br J Dermatol. 1999;141:240–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Mügge C, Haustein UF, Nenoff P. Causative agents of onychomycosis—a retrospective study. J Dtsch Dermatol Ges. 2006;4:218–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Gräser Y, Scott J, Summerbell RC. The new species concept in dermatophytes—a polyphasic approach. Mycopathologia. 2008;166:239–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Heidemann S, Monod M, Gräser Y. Signature polymorphisms in the internal transcribed spacer region relevant for the differentiation of zoophilic and anthropophilic strains of Trichophyton interdigitale and other species of T. mentagrophytes sensu lato. Br J Dermatol. 2010;162:282–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Nenoff P, Mügge С, Haustein UF. Differenzierung der klinisch wichtigsten Dermatophyten. Teil I: Trichophyton. Derm Prakt Dermatol. 2002;8:16–31.Google Scholar
  32. 32.
    Beifuss B, Bezold G, Gottlöber P, et al. Direct detection of five common dermatophyte species in clinical samples using a rapid and sensitive 24-h PCR-ELISA technique open to protocol transfer. Mycoses. 2011;54:137–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Brillowska-Dabrowska A, Saunte DM, Arendrup MC. Five-hour diagnosis of dermatophyte nail infections with specific detection of Trichophyton rubrum. J Clin Microbiol. 2007;45:1200–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Nenoff P, Herrmann J, Gräser Y. Trichophyton mentagrophytes sive interdigitale? Ein dermatophyt im wandel der zeit. J Dtsch Dermatol Ges. 2007;5:198–203.CrossRefPubMedGoogle Scholar
  35. 35.
    Kallow W, Erhard M, Shah H, Raptakis E, Welker M. Chapter 12—MALDI-TOF MS for microbial identification: years of experimental development to an established protocol. In: Shah H, Gharbia S, Encheva V, editors. Mass spectrometry for microbial proteomics. Chichester:Wiley; 2010. pp. 255–76. ISBN:978-0-470-68199-2.CrossRefGoogle Scholar
  36. 36.
    Stackebrandt E, Päuker О, Erhard М. Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption Ionization time-of-flight (MALDI TOF) mass spectrometry: comparison with gene sequence phylogenies. Curr Microbiol. 2005;50:71–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Donohue MJ, Smallwood АW, Pfaller S, Rodgers M, Shoemaker JA. The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells. J Microbiol Methods. 2006;65:380–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Donohue MJ, Best JM, Smallwood AW, Kostich M, Rodgers M, Shoemaker JA. Differentiation of Aeromonas isolated from drinking water distribution systems using matrix-assisted laser desorption/ionization-mass spectrometry. Anal Chem. 2007;79:1939–46.CrossRefPubMedGoogle Scholar
  39. 39.
    Pignone M, Greth KM, Cooper J, Emerson D, Tang J. Identification of mycobacteria by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. J Clin Microbiol. 2006;44:1963–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Erhard M, Hipler UC. SARAMIS-MALDI-TOF MS analysis of Aspergillus species. Mycoses. 2007;50:352 (abstract).Google Scholar
  41. 41.
    Pföhler C, Hollemeyer K, Heinzle Е, Altmeyer W, Graeber S, Müller CS, Stark A, Jager SU, Tilgen W. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new tool in diagnostic investigation of nail disorders? Exp Dermatol. 2009;18:880–2.CrossRefPubMedGoogle Scholar
  42. 42.
    Lecha M, Effendy I, Feuilhade de Chauvin M, Di Chiacchio N, Baran R. Taskforce on onychomycosis education. Treatment options-development of consensus guidelines. J Eur Acad Dermatol Venereol. 2005;19 Suppl 1:25–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Nenoff P. Mykologie—state of the art. Kompendium Dermatol. 2010;6(1):1–3.Google Scholar
  44. 44.
    Gupta AK, Lynch LE, Kogan N, Cooper EA. The use of an intermittent terbinafine regimen for the treatment of dermatophyte toenail onychomycosis. J Eur Acad Dermatol Venereol. 2009;23:256–62CrossRefPubMedGoogle Scholar
  45. 45.
    Zisova L. Fluconazole in the treatment of onychomycosis. Folia Medica. 2004;46:47–50.PubMedGoogle Scholar
  46. 46.
    Gupta AK, Drummond-Main C, Cooper EA, Brintnell W, Piraccini BM, Tosti A. Systematic review of nondermatophyte mold onychomycosis: diagnosis, clinical types, epidemiology, and treatment. J Am Acad Dermatol. 2012;66:494–502.CrossRefPubMedGoogle Scholar
  47. 47.
    Ling MR, Swinyer LJ, Jarrat MT, et al. Once weekly fluconazole (450 mg) for 4, 6 or 9 months of treatment for distal subungual onychomycosis of the toe nail. J Am Acad Dermotol. 1998;38(6 Pt 2):S95–102.CrossRefGoogle Scholar
  48. 48.
    Baran R, Hay RJ. Partial surgical avulsion of the nail in onychomycosis. Clin Exp Dermatol. 1985;10:413–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Lai WY, Tang WY, Loo SK, Chan Y. Clinical characteristics and treatment outcomes of patients undergoing nail avulsion surgery for dystrоphic nails. Hong Kong Med J. 2011;17:127–31.PubMedGoogle Scholar
  50. 50.
    Hochman LG. Laser treatment of onychomycosis using a novel 0.65-millisecond pulsed Nd:YAG 1064-nm laser. J Cosmеt Las Ther. 2011;13:2–5.CrossRefGoogle Scholar
  51. 51.
    Landsman AS, Robbins AH, Angelini PF, et al. Treatment of mild, moderate, and severe onychomycosis using 870- and 930 nm light exposure. J Am Podiatr Med Assoc. 2010;100:166–77.PubMedGoogle Scholar
  52. 52.
    Manevitch Z, Lev D, Hochberg M, Palhan M, Lewis A, Enk CD. Direct antifungal effect of femtosecond laser on Trichophyton rubrum onychomycosis. Photochem Photobiol. 2010;86:476–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Borovoy M, Tracy M. Noninvasive CO2 laser fenestration improves treatment of onychomycosis. Clin Laser Mon. 1992;10:123–4.PubMedGoogle Scholar
  54. 54.
    Rothermel E, Apfelberg DB. Carbon dioxide laser use for certain diseases of the toenails. Clin Podiatr Med Surg. 1987;4:809–21.PubMedGoogle Scholar
  55. 55.
    Hohenleutner U. Innovations in dermatologic laser therapy. Hautarzt. 2010;61:410–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Aspiroz C, Fortuño Cebamanos B, Rezusta A, Paz-Cristóbal P, Domínguez-Luzón F, Gené Díaz J, Gilaberte Y. Photodynamic therapy for onychomycosis. Case report and review of the literature. Rev Iberoam Micol. 2011;28:191–3.CrossRefPubMedGoogle Scholar
  57. 57.
    Kamp H, Tietz HJ, Lutz M, Piazena H, Sowyrda P, Lademann J, Blume-Peytavi U. Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses. 2005;48:101–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Gilaberte Y, Aspiroz C, Martes MP, Alcalde V, Espinel-Ingroff A, Rezusta A. Treatment of refractory fingernail onychomycosis caused by nondermatophyte molds with methylaminolevulinate photodynamic therapy. J Am Acad Dermatol. 2011;65:669–71.CrossRefPubMedGoogle Scholar
  59. 59.
    Watanabe D, Kawamura C, Masuda Y, Akita Y, Tamada Y, Matsumoto Y. Successful treatment of toenail onychomycosis with photodynamic therapy. Arch Dermatol. 2008;144:19–21.CrossRefPubMedGoogle Scholar
  60. 60.
    Sotiriou E, Koussidou-Eremonti T, Chaidemenos G, Apalla Z, Ioannides D. Photodynamic therapy for distal and lateral subungual toenail onychomycosis caused by trichophyton rubrum: preliminary results of a single-centre open trial. Acta Derm Venereol. 2010;90:216–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Petranyi G, Ryder NS, Stutz A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science. 1984;224:1239–41.CrossRefPubMedGoogle Scholar
  62. 62.
    Ryder NS, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother. 1997;8:275–87.Google Scholar
  63. 63.
    Ryder NS, Wagner S, Leitner I. In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother. 1998;42:1057–61.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Georgi Tchernev
    • 1
  • Plamen Kolev Penev
    • 2
  • Pietro Nenoff
    • 3
  • Liliya Georgieva Zisova
    • 4
  • José Carlos Cardoso
    • 5
  • Teodora Taneva
    • 1
  • Gabriele Ginter-Hanselmayer
    • 6
  • Julian Ananiev
    • 7
  • Maya Gulubova
    • 7
  • Reni Hristova
    • 4
  • Desislava Nocheva
    • 4
  • Claudio Guarneri
    • 8
  • G. Martino
    • 8
  • Nobuo Kanazawa
    • 9
  1. 1.Polyclinic for Dermatology and VenerologyUniversity Hospital Lozenetz, Academic Educational Hospital of the Saint Kliment Ohridski University, Medical FacultySofiaBulgaria
  2. 2.Department of Dermatology and VenerologyTrakia University, Medical facultyStara ZagoraBulgaria
  3. 3.Haut- und Laborarzt/Allergologie, AndrologieLabor für medizinische MikrobiologieMölbisGermany
  4. 4.Department of Dermatology and VenerologyMedical University PlovdivPlovdivBulgaria
  5. 5.Dermatology and Venerology DepartmentUniversity Hospital of CoimbraCoimbraPortugal
  6. 6.Department of Dermatology and VenerologyMedical University of GrazGrazAustria
  7. 7.Department of General and Clinical PathologyMedical Faculty, Trakia UniversityStara ZagoraBulgaria
  8. 8.Department of Social Territorial Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
  9. 9.Department of DermatologyWakayama Medical UniversityWakayamaJapan

Personalised recommendations