Skip to main content

Nuclear medicine in NET

Nuklearmedizinische Diagnostik bei Patienten mit neuroendokrinen Tumoren

Summary

Neuroendocrine tumors (NET) are, despite increasing incidence, still rare, usually slow growing neoplasms with resemblance to nerve cells and the endocrine capability of hormone production. In contrast to commonly used conventional imaging procedures, nuclear imaging is feasible to visualize the presence of molecular biomarkers, particularly the overexpression of somatostatin receptors (sstr) with high diagnostic accuracy which has led to the establishment of somatostatin receptor scintigraphy (SRS) as essential component and gold standard of functional imaging in the workup of NET. Another major feature is the selection of patients with inoperable or metastasized tumors showing sufficient uptake for peptide receptor radionuclide therapy (PRRT). While somatostatin receptor PET and PET/CT using Ga-68-labeled SSR analogs represents the consistent further development of SRS, FDG-PET can only be used in tumors with high proliferative activity but not on a routine basis for imaging of neuroendocrine tumors. 18F-DOPA represents an alternative PET tracer worth mentioning currently under assessment for NET imaging.

Zusammenfassung

Neuroendokrine Tumoren (NET) stellen trotz steigender Inzidenz eine Gruppe seltener, gewöhnlich langsam wachsender Neoplasien mit Beziehung zu neuralen Zellen sowie der typisch endokrinen Fähigkeit zur Hormonproduktion dar. Im Gegensatz zu konventionellen bildgebenden Verfahren bietet die molekulare Bildgebung die Möglichkeit der Darstellung vorhandener molekularer Biomaker, im Speziellen die für NET typische verstärkte Expression von Somatostatinrezeptoren (sstr) mit hoher diagnostischer Treffsicherheit, was zur Etablierung der Somatostatinrezeptorszintigraphie (SRS) als essentieller Bestandteil und Goldstandard der funktionellen Bildgebung im Rahmen der NET Diagnostik geführt hat. Weiteres wichtiges Merkmal der Methode ist die Selektion von Patienten mit fortgeschrittener Erkrankung und ausreichendem Uptake für die Peptidrezeptor-Radionuklidtherapie (PRRT). Während Somatostatinrezeptor-PET und PET/CT mit Ga-68 markierten SSR-Analoga die logische Weiterentwicklung der SRS darstellt, kann die FDG-PET lediglich bei NET mit hoher proliferativer Aktivität eingesetzt werden und stellt keine Standardbildgebung von neuroendokrinen Tumoren dar. 18F-DOPA steht als alternativer PET-Tracer zur Evaluierung von NET für diverse Tumorentitäten zur Verfügung.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kaserer K, Koperek O. Pathologie der neuroendokrinen Tumoren des Gastrointestinaltraktes und des Pankreas. Spectr Onkol. 2008;3(2008):8–12.

    Google Scholar 

  2. Rindi G, Arnold R, Bosman FT, et al. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman TF, Carneiro F, Hruban RH, Theise ND. editors. Lyon: International Agency for Research on cancer (IARC); 2010. p. 13.

  3. Yao JC, Hassan M, Phan A. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–3072.

    Article  PubMed  Google Scholar 

  4. Bornschein J, Kidd M, Malfertheiner P, Modlin IM. Gastrointestinal neuroendocrine tumors. Dtsch Med Wochenschr. 2008;133(28–29):1505–10.

    Article  PubMed  CAS  Google Scholar 

  5. Niederle MB, Hackl M, Kaserer K, Niederle B. Gastroenteropancreatic neuroendocrine tumours: the current incidence and staging based on the WHO and European Neuroendocrine Tumour Society classification: an analysis based on prospectively collected parameters. Endocr Relat Cancer. 2010;17(4):909–18.

    Article  PubMed  Google Scholar 

  6. Klöppel G, Couvelard A, Perren A, Komminoth P, McNicol AM, Nilsson O, Scarpa A, Scoazec JY, Wiedenmann B, Papotti M, Rindi G, Plöckinger U, participants, Mallorca Consensus Conference und Society., European Neuroendocrine Tumor. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology. 2009;90(2):162–6. Epub 2009 Aug 28. No abstract available. Erratum in: Neuroendocrinology. 2009;90(4):432. Neuroendocrinology. 2010;92(4):251. Neuroendocrinology. 2010;92(3):197.

  7. Ramage JK, Ahmed A, Ardill J, et al. (UK and Ireland Neuroendocrine Tumour Society). Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut. 61(1):6–32.

  8. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28(7):836–46.

    Article  PubMed  CAS  Google Scholar 

  9. Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O’Carroll AM, Patel YC, Schonbrunn A, Taylor JE, et al. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci. 1995;16(3):86–8.

    Article  PubMed  CAS  Google Scholar 

  10. Reubi JC. Peptide receptor expression in GEP-NET. Virchows Arch. 2007;451(Suppl 1):47–50.

    Article  Google Scholar 

  11. Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, Reubi JC, Visser TJ, Bruns C, Kwekkeboom DJ, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33(5):652–8.

    PubMed  CAS  Google Scholar 

  12. Weiner RE, Thakur ML. Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med. 2001;31(4):296–311.

    Article  PubMed  CAS  Google Scholar 

  13. Virgolini I, Leimer M, Handmaker H, Lastoria S, Bischof C, Muto P, Pangerl T, Gludovacz D, Peck-Radosavljevic M, Lister-James J, Hamilton G, Kaserer K, Valent P, Dean R. Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 99mTc-P829. Cancer Res. 1998;58(9):1850–9.

    PubMed  CAS  Google Scholar 

  14. Gotthardt M, Dijkgraaf I, Boerman OC, Oyen WJ. Nuclear medicine imaging and therapy of neuroendocrine tumours. Cancer Imaging. 2006;6:178–84.

    Article  Google Scholar 

  15. John M, Meyerhof W, Richter D, Waser B, Schaer JC, Scherübl H, Boese-Landgraf J, Neuhaus P, Ziske C, Mölling K, Riecken EO, Reubi JC, Wiedenmann B. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut. 1996;38(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  16. Decristofero C, Mather SJ, Cholewinsky W et al. 99 m Tc-tricine-Hynic-TOC: a new 99 m Tc-labelled radiopharmaceutical for imaging somatostatin receptor positive tumors; first clinical results and intra patient comparison with 111 In-labelled octreotide derivates. Eur J Nucl Med. 2000;27(9):1318–25.

    Article  Google Scholar 

  17. Bangard M, Béhé M, Guhlke S, Otte R, Bender H, Maecke HR, Biersack HJ. Detection of somatostatin receptor-positive tumours using the new 99 mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med. 2000;27(6):628–37.

    Article  PubMed  CAS  Google Scholar 

  18. Lebtahi R, Le Cloirec J, Houzard C, Daou D, Sobhani I, Sassolas G, Mignon M, Bourguet P, Le Guludec D. Detection of neuroendocrine tumors: 99 mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med. 2002;43(7):889–95.

    PubMed  CAS  Google Scholar 

  19. Gabriel M, Decristoforo C, Donnemiller E, Ulmer H, Watfah Rychlinski C, Mather SJ, Moncayo R. An intrapatient comparison of 99 mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med. 2003;44(5):708–16.

    PubMed  CAS  Google Scholar 

  20. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WAP, Kooji PPM, Oei HY van Hagen M, Postema PTE, de Jong M, Reubi JC, Visser TJ Reijs AEM, Hofland LJ, Koper JW, Lamberts SWJ. Somatostatin receptor scintigraphy with [111 In-DTPA-D-Phe1] und [123 I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.

    Article  PubMed  CAS  Google Scholar 

  21. de Herder WW, Kwekkeboom DJ, Valkema R, Feelders RA, van Aken MO, Lamberts SW, Van Der Lely AJ, Krenning EP. Neuroendocrine tumors and somatostatin: imaging techniques. J Endocrinol Invest. 2005;28(11 Suppl International):132–6.

    PubMed  CAS  Google Scholar 

  22. Kwekkeboom DJ, Krenning EP, Scheidhauer K, Lewington V, Lebtahi R, Grossman A, Vitek P, Sundin A, Plöckinger U, participants, Mallorca Consensus Conference und Society., European Neuroendocrine Tumor. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with (111)In-pentetreotide. Neuroendocrinology. 2009;90(2):184–9. Epub 2009 Aug 28.

  23. Raderer M, Kurtaran A, Leimer M, Angelberger P, Niederle B, Vierhapper H, Vorbeck F, Hejna MH, Scheithauer W, Pidlich J, Virgolini I. Value of peptide receptor scintigraphy using (123)I-vasoactive intestinal peptide and (111)In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993–1998. J Clin Oncol. 2000;18(6):1331–6.

    PubMed  CAS  Google Scholar 

  24. Koopmans KP, Neels ON, Kema IP, Elsinga PH, Links TP, de Vries EG, Jager PL. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71(3):199–213.

    Article  PubMed  Google Scholar 

  25. Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med. 1998;25(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  26. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–85.

    Article  PubMed  CAS  Google Scholar 

  27. Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, Hansen CP, Højgaard L, Kjaer A. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51(5):704–12.

    Article  PubMed  Google Scholar 

  28. Belhocine T, Foidart J, Rigo P, Najjar F, Thiry A, Quatresooz P, Hustinx R. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun. 2002;23(8):727–34.

    Article  PubMed  CAS  Google Scholar 

  29. Eriksson B, Bergström M, Orlefors H, Sundin A, Oberg K, Långström B. Use of PET in neuroendocrine tumors. In vivo applications and in vitro studies. Q J Nucl Med. 2000;44(1):68–76.

    PubMed  CAS  Google Scholar 

  30. Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, Schumacher J, Henze M, Heppeler A, Meyer J, Knapp H. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28(12):1751–7.

    Article  PubMed  CAS  Google Scholar 

  31. Ambrosini V, Tomassetti P, Franchi R, Fanti S. Imaging of NETs with PET radiopharmaceuticals. Q J Nucl Med Mol Imaging. 2010;54(1):16–23.

    PubMed  CAS  Google Scholar 

  32. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, Schilling T, Haufe S, Herrmann T, Haberkorn U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34(10):1617–26.

    Article  PubMed  CAS  Google Scholar 

  33. Ambrosini V, Nanni C, Zompatori M, Campana D, Tomassetti P, Castellucci P, Allegri V, Rubello D, Montini G, Franchi R, Fanti S. (68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2010;37(4):722–7.

    Article  PubMed  Google Scholar 

  34. Krausz Y, Freedman N, Rubinstein R, Lavie E, Orevi M, Tshori S, Salmon A, Glaser B, Chisin R, Mishani E, J Gross D. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with In-DTPA-octreotide (OctreoScanâ). Mol Imaging Biol. 2011;13(3):583–93.

    Article  PubMed  Google Scholar 

  35. Teunissen JJ, Kwekkeboom DJ, Valkema R, Krenning EP. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer. 2011;18(Suppl 1):27–51.

    Article  Google Scholar 

  36. Minn H, Kauhanen S, Seppänen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50(12):1915–8.

    Article  PubMed  CAS  Google Scholar 

  37. Gazdar AF, Helman LJ, Israel MA, Russell EK, Linnoila RI, Mulshine JL, Schuller HM, Park JG. Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res. 1988;48(14):4078–82.

    PubMed  CAS  Google Scholar 

  38. Gazdar AF, Helman LJ, Israel MA, et al. Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res. 1988;48:4078–4082.

    PubMed  CAS  Google Scholar 

  39. Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, Gutman F, Grangé JD, Lotz JP, Talbot JN. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med. 2006;47(9):1455–62.

    PubMed  CAS  Google Scholar 

  40. Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, Brouwers AH, Jager PL, de Vries EG. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26(9):1489–95.

    Article  PubMed  Google Scholar 

  41. Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, Moser E, Nitzsche E. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220(2):373–80.

    PubMed  CAS  Google Scholar 

  42. Becherer A, Szabó M, Karanikas G, Wunderbaldinger P, Angelberger P, Raderer M, Kurtaran A, Dudczak R, Kletter K. Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med. 2004;45(7):1161–7.

    PubMed  CAS  Google Scholar 

  43. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, Nanni C, Rizzello A, Franchi R, Fanti S. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1431–8.

    Article  PubMed  CAS  Google Scholar 

  44. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, Langstrom B, Bergstrom M, Eriksson B. Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90(6):3392–400.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Sorschag MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sorschag, M., Malle, P. & Gallowitsch, HJ. Nuclear medicine in NET. Wien Med Wochenschr 162, 416–422 (2012). https://doi.org/10.1007/s10354-012-0130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0130-z

Keywords

  • NET
  • Neuroendocrine tumors
  • Nuclear imaging
  • Somatostatin receptor scintigraphy
  • Peptide imaging
  • 68Ga-DOTATOC PET/CT

Schlüsselwörter

  • NET
  • Neuroendokrine Tumoren
  • Molekulare Bildgebung
  • Somatostatinrezeptorszintigraphie
  • Somatinrezeptor-PET/CT
  • 6 8Ga-DOTATOC PET/CT