Skip to main content

Advertisement

Log in

Arrhythmia-associated cardiac Ca2+ cycling proteins and gene mutations

Mutationen von Proteinen des kardialen Ca2+ Stoffwechsels in der Arrhythmogenese

  • Kalzium in der kardialen Pathophysiologie
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2012

Summary

Calcium is an important mediator in cardiac excitation and disorders in cardiac Ca2+ homeostasis have great influence on the cardiac action potential. Therefore dysfunction in regulatory proteins that are involved in Ca2+ handling can lead to the occurrence of severe arrhythmia. Although mutations in Ca2+ regulating proteins are quite rare, they can offer general insights into arrhythmogenesis. Here, we briefly review some important aspects of arrhythmia-associated mutations in Ca2+ regulating proteins with special emphasis to its associated pathophysiology.

Zusammenfassung

Kalziumionen sind ein wichtiger Mediator der kardialen Rhythmogenese, und Störungen der Ca2+ Homöostase führen zu Veränderungen des kardialen Aktionspotentials. Mutationen in Genen, die Proteinen des intrazellulären Kalziumstoffwechsels kodieren, können zum Auftreten von schweren Herzrhythmusstörungen führen. Obwohl Mutationen solcher Proteine relativ selten sind, bieten sie allgemeine Einblicke in die kardiale Arrhythmogenese. Im Artikel werden daher einige der wichtigsten, mit Arrhythmien assoziierten Mutationen des Kalziumstoffwechsels unter besonderer Beachtung einiger pathophysiologischer Aspekte diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    Article  PubMed  CAS  Google Scholar 

  2. Hadri L, Hajjar RJ. Calcium cycling proteins and their association with heart failure. Clin Pharmacol Ther. 2011;90(4):620–4.

    Article  PubMed  CAS  Google Scholar 

  3. Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.

    Article  PubMed  CAS  Google Scholar 

  4. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;15:442–9.

    Article  Google Scholar 

  5. Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005;102:8089–96.

    Article  PubMed  CAS  Google Scholar 

  6. Splawski I, Timothy KW, Priori SG, Napolitano C, Bloise R. Timothy Syndrome. In: Pagon RA, Bird TD, Dolan CR, Stephens K, editors. Gene Reviews (Internet). Seattle: University of Washington, Seattle; 1993–2006 Feb 15 (updated 2011 Apr 21).

  7. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm. 2005;2(4):429–40.

    Article  PubMed  Google Scholar 

  8. Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol. 2010;49(4):543–53.

    Article  PubMed  CAS  Google Scholar 

  9. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101:365–76.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 1997;272:23389–97.

    Article  PubMed  CAS  Google Scholar 

  11. Györke I, Hester N, Jones LR, Györke S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J. 2004;86:2121–8.

    Article  PubMed  Google Scholar 

  12. Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34:951–69.

    Article  PubMed  CAS  Google Scholar 

  13. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200.

    Article  PubMed  CAS  Google Scholar 

  14. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69:1378–84.

    Article  PubMed  CAS  Google Scholar 

  15. Kirchhefer U, Wehrmeister D, Postma AV, Pohlentz G, Mormann M, Kucerova D,et al. The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling. J Mol Cell Cardiol. 2010;49:95–105.

    Article  PubMed  CAS  Google Scholar 

  16. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.

    Article  PubMed  Google Scholar 

  17. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012;21(12):2759–67.

    Google Scholar 

  18. George CH, Higgs GV, Lai FA. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ Res. 2003;93:531–40.

    Article  PubMed  CAS  Google Scholar 

  19. Houle TD, Ram ML, Cala SE. Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium. Cardiovasc Res. 2004;64:227–33.

    Article  PubMed  CAS  Google Scholar 

  20. Dirksen WP, Lacombe VA, Chi M, Kalyanasundaram A, Viatchenko-Karpinski S, Terentyev D, et al. A mutation in calsequestrin, CASQ2D307H, impairs Sarcoplasmic Reticulum Ca2+ handling and causes complex ventricular arrhythmias in mice. Cardiovasc Res. 2007;75:69–78.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang D, Xiao B, Zhang L, Chen SR. Enhanced basal activity of a cardiac Ca2+ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death. Circ Res. 2002;91:218–25.

    Article  PubMed  CAS  Google Scholar 

  22. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol. 1990;258:H1796–805.

    PubMed  CAS  Google Scholar 

  23. Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff JM, Vaksmann G, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet. 2005;42:863–70.

    Article  PubMed  CAS  Google Scholar 

  24. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.

    Article  PubMed  CAS  Google Scholar 

  25. Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292:1341–4.

    Article  PubMed  CAS  Google Scholar 

  26. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–9.

    Article  PubMed  CAS  Google Scholar 

  27. Swan H, Laitinen P, Kontula K, Toivonen L. Calcium channel antagonism reduces exercise-induced ventricular arrhythmias in catecholaminergic polymorphic ventricular tachycardia patients with RyR2 mutations. J Cardiovasc Electrophysiol. 2005;16:162–6.

    Article  PubMed  Google Scholar 

  28. Sumitomo N, Harada K, Nagashima M, Yasuda T, Nakamura Y, Aragaki Y, et al. Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart. 2003;89:66–70.

    Article  PubMed  CAS  Google Scholar 

  29. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 2006;114:e385–484.

    Article  PubMed  Google Scholar 

  30. Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, Roach DE, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15:380–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kochhäuser MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochhäuser, S., Schulze-Bahr, E. & Kirchhefer, U. Arrhythmia-associated cardiac Ca2+ cycling proteins and gene mutations. Wien Med Wochenschr 162, 292–296 (2012). https://doi.org/10.1007/s10354-012-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0114-z

Keywords

Schlüsselwörter

Navigation