Calcium antagonists in myocardial ischemia/reperfusion—update 2012

Kalzium-Antagonisten bei myokardialer Ischämie und Reperfusion – Update 2012

Summary

The present article briefly reviews the processes underlying excitation–contraction coupling in cardiomyocytes and vascular smooth muscle cells, their perturbations during reversible and irreversible myocardial ischemia and reperfusion, notably the pathogenetic role of increased intracellular calcium concentrations, and finally the beneficial effects of calcium antagonists on the impairment of coronary vasomotor tone, on cardiac contractile dysfunction and on myocardial infarction.

Zusammenfassung

Die vorliegende Übersicht charakterisiert kurz die grundlegenden Prozesse der elektromechanischen Kopplung in Kardiomyozyten und glatten Gefäßmuskelzellen, ihre Veränderungen bei reversibler und irreversibler myokardialer Ischämie und Reperfusion, insbesondere die pathogenetische Funktion der erhöhten intrazellulären Kalziumkonzentration, sowie schließlich die protektiven Wirkungen von Kalziumantagonisten auf den gestörten koronaren Vasomotorentonus, die kontraktile Dysfunktion und die myokardiale Infarktausprägung.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Reference

  1. 1.

    Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Ramirez RJ, Sah R, Liu J, Rose RA, Backx PH. Intracellular [Na+] modulates synergy between Na+/Ca2+ exchanger and L-type Ca2+ current in cardiac excitation-contraction coupling during action potentials. Basic Res Cardiol. 2011;106:967–77.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Berridge MJ. Smooth muscle cell calcium activation mechanisms. J Physiol. 2008;586:5047–61.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    House SJ, Potier M, Bisaillon J, Singer HA, Trebak M. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflügers Arch. 2008;456:769–85.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Ono K, Iijima T. Cardiac T-type Ca2+ channels in the heart. J Mol Cell Cardiol. 2010;48:65–70.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Fabritz L, Herzig S. Can T-type calcium channels make a change of heart after myocardial infarction? Fiction or fact, and for better or for worse? Cardiovasc Res. 2011;91:373–5.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Wang SQ, Song LS, Xu L, Meissner G, Lakatta EG, Rios E, et al. Thermodynamically irreversible gating of ryanodine receptors in situ revealed by stereotyped duration of release in Ca2+ sparks. Biophys J. 2002;83:242–51.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. The myocardial Na+-H+ exchange. Structure, regulation, and its role in heart disease. Circ Res. 1999;85:777–86.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Inserte J, Garcia-Dorado A, Ruiz-Meana M, Padilla F, Barrabés JA, Pina P, et al. Effect of inhibition of Na+/Ca2+ exchanger at the time of myocardial reperfusion on hypercontracture and cell death. Cardiovasc Res. 2002;55:739–48.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Leineweber K, Heusch G, Schulz R. Regulation and role of the presynaptic and myocardial Na+/H+ exchanger NHE1: effects on the sympathetic nervous system in heart failure. Cardiovasc Drug Rev. 2007;25:123–31.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Abdallah Y, Kasseckert SA, Iraqi W, Said M, Shahzad T, Erdogan A, et al. Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med. 2011;15:2478–85.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol. 2007;102:542–52.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Heusch G, Boengler K, Schulz R. Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol. 2010;105:151–4.

    PubMed  Article  Google Scholar 

  14. 14.

    Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;70:609–34.

    Google Scholar 

  16. 16.

    Schäfer C, Ladilov Y, Inserte J, Schäfer M, Haffner S, Garcia-Dorado D, et al. Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc Res. 2001;51:241–50.

    PubMed  Article  Google Scholar 

  17. 17.

    Piper HM, Meuter K, Schäfer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg. 2003;75:S644–8.

    PubMed  Article  Google Scholar 

  18. 18.

    Bassenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol. 1990;116:77–165.

    PubMed  CAS  Google Scholar 

  19. 19.

    Ferrari R. Major differences among the three classes of calcium antagonists. Eur Heart J. 1997;18(Suppl A):A56–70.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Hermsmeyer K. Role of T channels in cardiovascular function. Cardiology. 1998;89(Suppl 1):2–9.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2011;52:794–801.

    PubMed  Article  Google Scholar 

  22. 22.

    van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, et al. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol. 2011;52:786–93.

    PubMed  Article  Google Scholar 

  23. 23.

    Dole WP. Autoregulation of the coronary circulation. Prog Cardiovasc Dis. 1987;29:293–323.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Canty JM Jr, Suzuki G. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol. 2011;52:822–31.

    PubMed  Article  Google Scholar 

  25. 25.

    Zhang C, Rogers P, Merkus D, Muller-Delp JM, Tiefenbacher CP, Potter B. Regulation of coronary microvascular resistance in health and disease. Compr Physiol. 2011;521–49 (American Physiological Society).

  26. 26.

    Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol. 2011;52:802–13.

    PubMed  Article  Google Scholar 

  27. 27.

    Duncker DJ, van Zon NS, Pavek TJ, Herrlinger SK, Bache RJ. Endogenous adenosine mediates coronary vasodilatation during exercise after K+ ATP channel blockade. J Clin Invest. 1995;95:285–95.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Duncker DJ, van Zon NS, Ishibashi Y, et al. Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Invest. 1996;97:996–1009.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ishibashi Y, Duncker DJ, Zhang J, et al. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res. 1998;82:346–59.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Liu Y, Gutterman DD. Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol. 2009;104:211–27.

    PubMed  Article  Google Scholar 

  31. 31.

    Knaapen P, Camici PG, Marques KM, Nijveldt R, Bax JJ, Westerhof N, et al. Coronary microvascular resistance: methods for its quantification in humans. Basic Res Cardiol. 2009;104:485–98.

    Google Scholar 

  32. 32.

    Heusch G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol. 2010;105:1–5.

    PubMed  Article  Google Scholar 

  33. 33.

    Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol. 2011;52:814–21.

    PubMed  Article  Google Scholar 

  34. 34.

    Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103:398–406.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Li J, Zhang H, Zhang C. Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications. J Mol Cell Cardiol. 2011;52:865–72.

    PubMed  Article  Google Scholar 

  36. 36.

    Heusch G. a-Adrenergic mechanisms in myocardial ischemia. Circulation. 1990;81:1–13.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, et al. a-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation. 2000;101:689–94.

    Google Scholar 

  38. 38.

    Heusch G. The paradox of a-adrenergic coronary vasoconstriction revisited. J Mol Cell Cardiol. 2011;51:16–23.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Gregorini L, Marco J, Heusch G. Peri-interventional coronary vasomotion. J Mol Cell Cardiol. 2011;52:883–9.

    PubMed  Article  Google Scholar 

  40. 40.

    Puri R, Liew GY, Nicholls SJ, Nelson AJ, Leong DP, Carbone A, et al. Coronary β2-adrenoreceptors mediate endothelium-dependent vasoreactivity in humans: novel insights from an in vivo intravascular ultrasound study. Eur Heart J. 2012;33:495–504.

    Google Scholar 

  41. 41.

    Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther. 2000;86:87–110.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Heusch G, Yoshimoto N, Müller-Ruchholtz ER. Effects of heart rate on hemodynamic severity of coronary artery stenosis in the dog. Basic Res Cardiol. 1982;77:562–73.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Heusch G, Yoshimoto N. Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pflügers Arch. 1983;397:284–9.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Heusch G, Yoshimoto N. Effects of cardiac contraction on segmental coronary resistances and collateral perfusion. Int J Microcirc. 1983;2:131–41.

    CAS  Google Scholar 

  45. 45.

    Raff WK, Kosche F, Lochner W. Extravascular coronary resistance and its relation to microcirculation. Am J Cardiol. 1972;29:598–603.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Hoffman JIE. Determinants and prediction of transmural myocardial perfusion. Circulation. 1978;58:381–91.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Gorman MW, Sparks HV Jr. Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res. 1982;51:411–20.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Aversano T, Becker LC. Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol. 1985;248:H403–11.

    PubMed  CAS  Google Scholar 

  49. 49.

    Canty JM, Klocke FJ. Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation. 1985;71:370–7.

    PubMed  Article  Google Scholar 

  50. 50.

    Heusch G, Guth BD, Seitelberger R, Ross Jr. J. Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation. 1987;75:482–90.

    Google Scholar 

  51. 51.

    Guth BD, Schulz R, Heusch G. Time course and mechanisms of contractile dysfunction during acute myocardial ischemia. Circulation. 1993;87(Suppl IV):IV-35–42

    Google Scholar 

  52. 52.

    Heusch G, Deussen A, Thämer V. Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst. 1985;13:311–26.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Heusch G, Deussen A. The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res. 1983;53:8–15.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross Jr. J. Intracoronary a2- adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res. 1988;62:436–42.

  55. 55.

    Kröger K, Schipke J, Thämer V, Heusch G. Poststenotic ischemic myocardial dysfunction induced by peripheral nociceptive stimulation. Eur Heart J. 1989;10(Suppl F):179–82.

    PubMed  Google Scholar 

  56. 56.

    Baumgart D, Haude M, Goerge G, Liu F, Ge J, Große-Eggebrecht C, et al. Augmented α-adrenergic constriction of atherosclerotic human coronary arteries. Circulation. 1999;99:2090–7.

    Google Scholar 

  57. 57.

    Baumgart D, Naber C, Haude M, Oldenburg O, Erbel R, Heusch G, et al. G-protein b3 subunit 825T-allele and enhanced coronary vasoconstriction upon a2-adrenoceptor activation. Circ Res. 1999;85:965–9.

    Google Scholar 

  58. 58.

    Heusch G. Emerging importance of alpha-adrenergic coronary vasoconstriction in acute coronary syndromes and its genetic background. J Am Coll Cardiol. 2003;41:195–6.

    PubMed  Article  Google Scholar 

  59. 59.

    Gregorini L, Marco J, Kozàkovà M, Palombo C, Anguissola GB, Marco I, et al. a-Adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation. 1999;99:482–90.

    Google Scholar 

  60. 60.

    Gregorini L, Marco J, Farah B, Bernies M, Palombo C, Kozakova M, et al. Effects of selective a1- and a2-adrenergic blockade on coronary flow reserve after coronary stenting. Circulation. 2002;106:2901–7.

    Google Scholar 

  61. 61.

    Ertl G. Coronary vasoconstriction in experimental myocardial ischemia. J Cardiovasc Pharmacol. 1987;9(Suppl 2):S9–17.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Saino A, Pomidossi G, Perondi R, Valentini R, Rimini A, Di Francesco L, et al. Intracoronary angiotensin II potentiates coronary sympathetic vasoconstriction in humans. Circulation. 1997;96:148–53.

    Google Scholar 

  63. 63.

    Hasdai D, Kornowski R, Battler A. Endothelin and myocardial ischemia. Cardiovasc Drugs Ther. 1994;8:589–99.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med. 1981;304:685–91.

    Google Scholar 

  65. 65.

    van den Berg EK, Schmitz JM, Benedict CR, Malloy CR, Willerson JT, Dehmer GJ. Transcardiac serotonin concentration is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation. 1989;79:116–24.

    Google Scholar 

  66. 66.

    Erbel R, Heusch G. Brief review: coronary microembolization. J Am Coll Cardiol. 2000;36:22–4.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation. 2009;120:1822–36.

    Google Scholar 

  68. 68.

    Kleinbongard P, Konorza T, Böse D, Baars T, Haude M, Erbel R, et al. Lessons from human coronary aspirate. J Mol Cell Cardiol. 2011;52:890–6.

    Google Scholar 

  69. 69.

    Böse D, Leineweber K, Konorza T, Zahn A, Brocker-Preuss M, Mann K, et al. Release of TNF-a during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol. 2007;292:H2295–9.

    Google Scholar 

  70. 70.

    Kleinbongard P, Böse D, Baars T, Möhlenkamp S, Konorza T, Schöner S, et al. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ Res. 2010;108:344–52.

    Google Scholar 

  71. 71.

    Leineweber K, Böse D, Vogelsang M, Haude M, Erbel R, Heusch G. Intense vasoconstriction in response to aspirate from stented saphenous vein aortocoronary bypass grafts. J Am Coll Cardiol. 2006;47:981–6.

    Google Scholar 

  72. 72.

    Kleinbongard P, Böse D, Konorza T, Steinhilber F, Möhlenkamp S, Eggebrecht H, et al. Acute vasomotor paralysis and potential downstream effects of paclitaxel from stents implanted for saphenous vein aorto-coronary bypass stenosis. Basic Res Cardiol. 2011;106:681–9.

    Google Scholar 

  73. 73.

    Rubanyl GM, Frye RL, Holmes DR, et al. Vasoconstrictor activity of coronary sinus plasma from patients with coronary artery disease. J Am Coll Cardiol. 1987;9:1243–9.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Golino P, Piscione F, Benedict CR, Anderson HV, Cappelli-Bigazzi M, Indolfi C, et al. Local effect of serotonin released during coronary angioplasty. N Engl J Med. 1994;330:523–8.

    Google Scholar 

  75. 75.

    Leosco D, Fineschi M, Pierli C, Fiaschi A, Ferrara N, Bianco S, et al. Intracoronary serotonin release after high-pressure coronary stenting. Am J Cardiol. 1999;84:1317–22.

    Google Scholar 

  76. 76.

    Niccoli G, Lanza GA, Shaw S, Romagnoli E, Gioia D, Burzotta F, et al. Endothelin-1 and acute myocardial infarction: a no-reflow mediator after successful percutaneous myocardial revascularization. Eur Heart J. 2006;27:1793–8.

    Google Scholar 

  77. 77.

    Adlbrecht C, Bonderman D, Plass C, Jakowitsch J, Beran G, Sperker W, et al. Active endothelin is an important vasoconstrictor in acute coronary thrombi. Thromb Haemost. 2007;97:642–9.

    Google Scholar 

  78. 78.

    Bonderman D, Teml A, Jakowitsch J, Adlbrecht C, Gyöngyösi M, Sperker W, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood. 2002;99:2794–800.

    Google Scholar 

  79. 79.

    Brambilla M, Camera M, Colnago D, Marenzi G, De MM, Giesen PL, et al. Tissue factor in patients with acute coronary syndromes: expression in platelets, leukocytes, and platelet-leukocyte aggregates. Arterioscler Thromb Vasc Biol. 2008;28:947–53.

    Google Scholar 

  80. 80.

    Mishra SK, Hermsmeyer K. Inhibition of signal Ca2+ in dog coronary arterial vascular muscle cells by Ro 40–5967. J Cardiovasc Pharmacol. 1994;24:1–7.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Boström S-L, Ljung B, Mardh S, Forsen S, Thulin E. Interaction of the antihypertensive drug felodipine with calmodulin. Nature. 1981;292:777–8.

    Google Scholar 

  82. 82.

    Ehring T, Heusch G. Calciumantagonisten bei experimenteller Myokardischämie und Reperfusion. In: Kübler W, Tritthart HA, editors. Calciumantagonisten. Forschung und Klinik, Vergangenheit, Gegenwart und Zukunft. Darmstadt: Steinkopff; 1996. pp. 57–119.

  83. 83.

    Vatner SF, Hintze TH. Effects of a calcium- channel antagonist on large and small coronary arteries in conscious dogs. Circulation. 1982;66:579–88.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Heusch G, Deussen A, Schipke J, Thä V. a1- and a2-Adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol. 1984;6:961–8.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Heusch G, Deussen A. Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol. 1984;6:378–83.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Ehring T, Heusch G. Felodipine prevents the poststenotic myocardial ischemia induced by a2-adrenergic coronary constriction. Cardiovasc Drugs Ther. 1990;4:443–9.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Heusch G, Deussen A, Schipke J, Thä V. Adenosine, dipyridamole and isosorbiddinitrate are ineffective to prevent the sympathetic initiation of poststenotic myocardial ischemia. Drug Res. 1986;36:1045–8.

    CAS  Google Scholar 

  88. 88.

    Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure. The CAMELOT study: a randomized controlled trial. JAMA. 2004;292:2217–26.

    Google Scholar 

  89. 89.

    Poole-Wilson PA, Lubsen J, Kirwan BA, van Dalen FJ, Wagener G, Danchin N, et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet. 2004;364:849–57.

    Google Scholar 

  90. 90.

    Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Guidelines on the management of stable angina pectoris: executive summary: the task force on the management of stable angina pectoris of the European Society of Cardiology. Eur Heart J. 2006;27:1341–81.

    Google Scholar 

  91. 91.

    Deedwania PC, Carbajal EV. Medical therapy versus myocardial revascularization in chronic coronary syndrome and stable angina. Am J Med. 2011;124:681–8.

    PubMed  Article  Google Scholar 

  92. 92.

    Deedwania PC, Carbajal EV, Bobba VR. Trials and tribulations associated with angina and traditional therapeutic approaches. Clin Cardiol. 2007;30:I16–24.

    PubMed  Article  Google Scholar 

  93. 93.

    Furberg CD, Psaty BM, Meyer JV. Nifedipine. Dose-related increase in mortality in patients with coronary heart disease. Circulation. 1995;92:1326–31.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Opie LH, Yusuf S, Kubler W. Current status of safety and efficacy of calcium channel blockers in cardiovascular diseases: a critical analysis based on 100 studies. Prog Cardiovasc Dis. 2000;43:171–96.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Chaitman BR, Laddu AA. Stable angina pectoris: antianginal therapies and future directions. Nat Rev Cardiol. 2012;9:40–52.

    Article  CAS  Google Scholar 

  96. 96.

    Schwartz BG, Kloner RA. Coronary no reflow. J Mol Cell Cardiol. 2011;52:873–82.

    PubMed  Article  Google Scholar 

  97. 97.

    van de Werf F, Bax J, Betriu A, Blomstrom-Lundqvist C, Crea F, Falk V, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the task force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology. Eur Heart J. 2008;29:2909–45.

    Google Scholar 

  98. 98.

    Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2010;31:2501–55.

    Google Scholar 

  99. 99.

    Desmet W, Bogaert J, Dubois C, Sinnaeve P, Adriaenssens T, Pappas C, et al. High-dose intracoronary adenosine for myocardial salvage in patients with acute ST-segment elevation myocardial infarction. Eur Heart J. 2011;32:867–77.

    Google Scholar 

  100. 100.

    Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    Google Scholar 

  101. 101.

    Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol Heart Circ Physiol. 1978;234:H653–9.

    Google Scholar 

  102. 102.

    Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Bolli R. Mechanism of myocardial “stunning”. Circulation. 1990;82:723–38.

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Bolli R. Myocardial “stunning” in man. Circulation. 1992;86:1671–91.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Heusch G. Stunning—great paradigmatic, but little clinical importance. Basic Res Cardiol. 1998;93:164–6.

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Heusch G, Rose J, Skyschally A, Post H, Schulz R. Calcium responsiveness in regional myocardial short-term hibernation and stunning in the in situ porcine heart—inotropic responses to postextrasystolic potentiation and intracoronary calcium. Circulation. 1996;93:1556–66.

    Google Scholar 

  107. 107.

    Heusch G. Therapy of myocardial stunning. Basic Res Cardiol. 1997;92(Suppl 2):30–1.

    PubMed  Google Scholar 

  108. 108.

    Ehring T, Heusch G. Stunned myocardium and the attenuation of stunning by calcium antagonists. Am J Cardiol. 1995;75:61E–7.

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Sheiban I, Tonni S, Benussi P, Marini A, Montresor G, Trevi GP. Myocardial stunning following coronary angioplasty: protective effects of calcium-channel blockers. J Cardiovasc Pharmacol. 1992;20(Suppl 5):S18–24.

    Google Scholar 

  110. 110.

    Heusch G. Myocardial stunning: a role for calcium antagonists during ischaemia? Cardiovasc Res. 1992;26:14–9.

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Ehring T, Böhm M, Heusch G. The calcium antagonist nisoldipine improves the functional recovery of reperfused myocardium only when given before ischemia. J Cardiovasc Pharmacol. 1992;20:63–74.

    PubMed  CAS  Google Scholar 

  112. 112.

    Rose J, Heusch G. Attenuation of regional myocardial stunning by felodipine. Cardiovasc Drugs Ther. 1996;10:347–9.

    PubMed  CAS  Google Scholar 

  113. 113.

    Przyklenk K, Ghafari GB, Eitzman DT, Kloner RA. Nifedipine administered after reperfusion ablates systolic contractile dysfunction of postischemic “stunned” myocardium. J Am Coll Cardiol. 1989;13:1176–83.

    PubMed  Article  CAS  Google Scholar 

  114. 114.

    Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol. 2002;39:30–6.

    Google Scholar 

  115. 115.

    Wu E, Ortiz JT, Tejedor P, Lee DC, Bucciarelli-Ducci C, Kansal P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94:730–6.

    Google Scholar 

  116. 116.

    Skyschally A, Schulz R, Heusch G. Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz. 2008;33:88–100.

    PubMed  Article  Google Scholar 

  117. 117.

    Schulz R, Post H, Jalowy A, Backenköhler U, Dörge H, Vahlhaus C, et al. Unique cardioprotective action of the new calcium antagonist mibefradil. Circulation. 1999;99:305–11.

    Google Scholar 

  118. 118.

    Wallbridge DR, Schulz R, Braun C, et al. No attenuation of ischaemic preconditioning by the calcium antagonist nisoldipine. J Mol Cell Cardiol. 1996;28:1801–10.

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Hansen JF. Calcium antagonists and myocardial infarction. Cardiovasc Drugs Ther. 1991;5:665–70.

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Baumgart D, Ehring T, Krajcar M, Heusch G. A proischemic action of nisoldipine: relationship to a decrease in perfusion pressure and comparison to dipyridamole. Cardiovasc Res. 1993;27:1254–9.

    PubMed  Article  CAS  Google Scholar 

  121. 121.

    Behrends M, Schulz R, Heusch G. Effects of verapamil and mibefradil on regional blood flow and function in normal and ischemic myocardium. Cardiovasc Drugs Ther. 1999;13:275–6.

    PubMed  Article  CAS  Google Scholar 

  122. 122.

    Opie LH. Should calcium antagonists be used after myocardial infarction? Ischemia selectivity versus vascular selectivity. Cardiovasc Drugs Ther. 1992;6:19–24.

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Heusch G. Ischemia-selectivity: a new concept of cardioprotection by calcium antagonists. Basic Res Cardiol. 1994;89:2–5.

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Grossman E, Messerli FH. Effect of calcium antagonists on sympathetic activity. Eur Heart J. 1998;19(Suppl F):F27–31.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. med. Dr. h.c. Gerd Heusch FRCP.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kleinbongard, P., Baars, T. & Heusch, G. Calcium antagonists in myocardial ischemia/reperfusion—update 2012. Wien Med Wochenschr 162, 302–310 (2012). https://doi.org/10.1007/s10354-012-0113-0

Download citation

Keywords

  • Calcium
  • Coronary vasomotor tone
  • Infarct size
  • No-reflow phenomenon
  • Stunning

Stichwörter

  • Kalzium
  • Koronarer Vasomotorentonus
  • Infarktgröße
  • No-reflow-Phänomen
  • Stunning