Wiener Medizinische Wochenschrift

, Volume 162, Issue 9–10, pp 201–206 | Cite as

The role of the placenta in fetal exposure to heavy metals

  • Claudia GundackerEmail author
  • Markus Hengstschläger
Main topic


The heavy metals mercury, lead, and cadmium are toxicants, which are well-known to cross the placenta and to accumulate in fetal tissues. Prenatal exposure to mercury and lead poses a health threat particularly to the developing brain. Fetal exposures to lead and cadmium correlate with reduced birth weight and birth size. The placental passage of cadmium is limited suggesting a partial barrier for this metal. It is very likely that metallothionein is responsible for placental storage of the metals especially of cadmium. It is unclear, however, which proteins are involved in placental uptake and efflux of the metals and where the transporters are located at the placental barrier. Hence, only certain aspects of placental metal toxicokinetics are known so far. The metals have also been shown to adversely affect placental functions. Both metal-specific placental transfer and impairment of placental function can explain the relationships between prenatal metal exposures and adverse effects on intrauterine growth and (neuro)development.


Toxicokinetics Toxicodynamics Prenatal exposure Mercury Lead Cadmium 

Die Bedeutung der Plazenta für die fetale Belastung mit Schwermetallen


Seit langem ist bekannt, dass die Schwermetalle Quecksilber, Blei und Cadmium plazentagängig sind und in fetalen Geweben akkumulieren. Pränatale Quecksilber- und Blei-Belastungen können die neurologische Entwicklung beeinträchtigen. Fetale Blei- und Cadmium-Belastungen korrelieren mit verringertem Geburtsgewicht und verringerter Geburtslänge. Während Quecksilber und Blei die Plazenta ungehindert passieren, gelangt nur wenig Cadmium zum Fetus. Dies dürfte daran liegen, dass Cadmium in höherem Ausmaß an Metallothionein bindet als Quecksilber und Blei. Die Plazenta stellt für Cadmium also zumindest eine partielle Barriere dar. Unklar ist, welche Proteine am plazentaren Metalltransport beteiligt sind und wo solche Transporter in der Plazentaschranke lokalisiert sind. Bislang sind also nur wenige Aspekte der Metall-Toxikokinetik in Plazenta bekannt. Quecksilber, Blei und Cadmium schädigen nachweislich die Plazentazellen. Beides, der metallspezifische Transfer über die Plazenta aber auch die metall-induzierte Schädigung der Plazenta können den Zusammenhang zwischen pränataler Metall-Belastung und den beobachteten Schadwirkungen auf die kindliche Entwicklung erklären.


Toxikokinetik Toxikodynamik Pränatale Belastung Quecksilber Blei Cadmium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Myren M, Mose T, Mathiesen L, et al. The human placenta – An alternative for studying foetal exposure. Toxicol In Vitro, 21: 1332–1340, 2007PubMedCrossRefGoogle Scholar
  2. Barr DB, Bishop A, Needham LL. Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod Toxicol, 23: 260–266, 2007PubMedCrossRefGoogle Scholar
  3. Needham LL, Grandjean P, Heinzow B, et al. Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol, 45: 1121–1126, 2010PubMedCrossRefGoogle Scholar
  4. Clarkson TW. The three modern faces of mercury. Environ Health Perspect, 110 (S1): 11–23, 2002PubMedCrossRefGoogle Scholar
  5. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA Journal, 980: 1–139, 2009Google Scholar
  6. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food, EFSA Journal, 8: 1570 [147 pp], 2010Google Scholar
  7. Quig D. Cysteine metabolism and metal toxicity. Altern Med Rev, 3: 262–270, 1998PubMedGoogle Scholar
  8. Gulson BL, Mizon KJ, Korsch MJ, et al. Mobilization of lead from human bone tissue during pregnancy and lactation-a summary of long-term research. Sci Total Environ, 303: 79–104, 2003PubMedCrossRefGoogle Scholar
  9. Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect, 108 (S3): 511–533, 2000PubMedCrossRefGoogle Scholar
  10. Grandjean P, Landrigan P. Developmental neurotoxicity of industrial chemicals. Lancet, 368: 2167–2178, 2006PubMedCrossRefGoogle Scholar
  11. Tian LL, Zhao YC, Wang XC. Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol Trace Elem Res, 132: 51–59, 2009PubMedCrossRefGoogle Scholar
  12. Gonzalez-Cossio T, Peterson KE, Sanin LH. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics, 100: 856–862, 1997PubMedCrossRefGoogle Scholar
  13. Salpietro CD, Gangemi S, Minciullo PL. Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women. J Perinat Med, 30: 395–399, 2002PubMedCrossRefGoogle Scholar
  14. Osman K, Akesson A, Berglund M. Toxic and essential elements in placentas of swedish women. Clin Biochem, 33: 131–138, 2000PubMedCrossRefGoogle Scholar
  15. Ronco AM, Urrutia M, Montenegro M. Cadmium exposure during pregnancy reduces birth weight and increases maternal and foetal glucocorticoids. Toxicol Lett, 188: 186–191, 2009PubMedCrossRefGoogle Scholar
  16. Gundacker C, Fröhlich S, Graf-Rohrmeister K. Perinatal lead and mercury exposure in Austria. Sci Total Environ, 408: 5744–5749, 2010PubMedCrossRefGoogle Scholar
  17. Zhu M, Fitzgerald EF, Gelberg KH. Maternal low-level lead exposure and fetal growth. Environ Health Perspect, 118: 1471–1475, 2010PubMedCrossRefGoogle Scholar
  18. Lin CM, Doyle P, Wang D. Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med, 68: 641–646, 2011PubMedCrossRefGoogle Scholar
  19. Grandjean P, Bjerve KS, Weihe P. Birthweight in a fishing community: significance of essential fatty acids and marine food contaminants. Int J Epidemiol, 30: 1272–1278, 2001PubMedCrossRefGoogle Scholar
  20. Hujoel PP, Lydon-Rochelle M, Bollen AM. Mercury exposure from dental filling placement during pregnancy and low birth weight risk. Am J Epidemiol, 161: 734–740, 2005PubMedCrossRefGoogle Scholar
  21. Xue F, Holzman C, Rahbar MH. Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect, 115: 42–47, 2006CrossRefGoogle Scholar
  22. Morrissette JJ, Takser L, St-Amour G. Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St. Lawrence River. Environ Res, 95: 363–374, 2004PubMedCrossRefGoogle Scholar
  23. Hu H, Tellez-Rojo M, Bellinger D. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ Health Perspect, 114: 1730–1735, 2006PubMedGoogle Scholar
  24. Chisolm JC, Handorf CR. Increased absorption of and sensitivity to cadmium during late pregnancy: is there a relationship between markedly decreased maternal cadmium binding protein (metallothionein) and pregnancy-induced hypertension? Med Hypotheses, 24: 347–351, 1987PubMedCrossRefGoogle Scholar
  25. Stern AH, Smith AE. An assessment of the cord blood: maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect, 111: 1465–1470, 2003PubMedCrossRefGoogle Scholar
  26. Soria ML, Sanz P, Martinez D, et al. Total mercury and methylmercury in hair, maternal and umbilical blood, and placenta from women in the Seville area. Bull Environ Contam Toxicol, 48: 494–501, 1992PubMedCrossRefGoogle Scholar
  27. Ask K, Akesson A, Berglund M. Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Perspect, 110: 523–526, 2002PubMedCrossRefGoogle Scholar
  28. Al-Saleh I, Shinwari N, Mashhour A, et al. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Envir Heal, 214: 79–101, 2011CrossRefGoogle Scholar
  29. Plöckinger B, Dadak C, Meisinger V. Lead, mercury and cadmium in newborn infants and their mothers. Z Geburtshilfe Perinatol, 197: 104–107, 1993PubMedGoogle Scholar
  30. Schramel P, Hasse S, Ovcar-Pavlu J. Selenium, cadmium, lead, and mercury concentrations in human breast milk, in placenta, maternal blood, and the blood of the newborn. Biol Trace Elem Res, 15: 111–124, 1988PubMedCrossRefGoogle Scholar
  31. Kantola M, Purkunen R, Kroger P, et al. Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg. Environ Res, 83: 54–66, 2000PubMedCrossRefGoogle Scholar
  32. Myllynen P. In search of models for hepatic and placental pharmacokinetics. Dissertation University of Oulu 2003. Available at:
  33. Benirschke K, Kaufmann P, Baergen RN. Pathology of the human placenta. 5th edn. Springer, New York, pp. 42–49, 2006Google Scholar
  34. Goyer RA. Transplacental transport of lead. Environ Health Perspect, 89: 101–105, 1990PubMedCrossRefGoogle Scholar
  35. Clarkson T, Vyas J, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med, 50: 757–764, 2007PubMedCrossRefGoogle Scholar
  36. Kajiwara Y, Yasutake A, Adachi T, et al. Methylmercury transport across the placenta via neutral amino acid carrier. Arch Toxicol, 70: 310–314, 1996PubMedCrossRefGoogle Scholar
  37. Yoshida M. Placental to fetal transfer of mercury and fetotoxicity. Tohoku J Exp Med, 196: 79–88, 2002PubMedCrossRefGoogle Scholar
  38. Bressler JP, Olivi L, Cheong JH. Divalent metal transporter 1 in lead and cadmium transport. Ann NY Acad Sci, 1012: 142–152, 2004PubMedCrossRefGoogle Scholar
  39. Georgieff MK, Wobken JK, Welle J. Identification and localization of divalent metal transporter-1 (DMT-1) in term human placenta. Placenta, 21: 799–804, 2000PubMedCrossRefGoogle Scholar
  40. Chong WS, Kwan PC, Chan LY. Expression of divalent metal transporter 1 (DMT1) isoforms in first trimester human placenta and embryonic tissues. Hum Reprod, 20: 3532–3538, 2005PubMedCrossRefGoogle Scholar
  41. Aschner M, Syversen T, Souza DO. Metallothioneins: mercury species-specific induction and their potential role in attenuating neurotoxicity. Exp Biol Med, 231: 1468–1473, 2006Google Scholar
  42. Goyer RA, Haust MD, Cherian MG. Cellular localization of metallothionein in human term placenta. Placenta, 13: 349–355, 1992PubMedCrossRefGoogle Scholar
  43. Shimada A, Yamamoto E, Morita T, et al. Ultrastructural demonstration of mercury granules in the placenta of metallothionein-null pregnant mice after exposure to mercury vapor. Toxicol Pathol, 32: 519–526, 2004PubMedCrossRefGoogle Scholar
  44. Ma HY, Li H, Wang J. Expression and significance of metallothionein in the placenta of women with low level lead exposure during pregnancy. Zhonghua Fu Chan Ke Za Zhi, 41: 676–679, 2006PubMedGoogle Scholar
  45. Kippler M, Hoque AMW, Raqib R. Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett, 192: 162–168, 2010PubMedCrossRefGoogle Scholar
  46. Benitez MA, Mendez-Armenta M, Montes S, et al. Mother-fetus transference of lead and cadmium in rats: involvement of metallothionein. Histol Histopathol, 24: 1523–1530, 2009PubMedGoogle Scholar
  47. Breen JG, Eisenmann C, Horowitz S, et al. Cell-specific increases in metallothionein expression in the human placenta perfused with cadmium. Reprod Toxicol, 8: 297–306, 1994PubMedCrossRefGoogle Scholar
  48. Brambila E, Liu J, Morgan DL, et al. Effect of mercury vapor exposure on metallothionein and glutathione s-transferase gene expression in the kidney of nonpregnant, pregnant, and neonatal rats. J Toxicol Environ Health A, 65: 1273–1288, 2002PubMedCrossRefGoogle Scholar
  49. Shimada A, Yamamoto E, Morita T, Yoshida M, Suzuki JS, Satoh M, et al. Ultrastructural demonstration of mercury granules in the placenta of metallothionein-null pregnant mice after exposure to mercury vapor. Toxicol Pathol, 32: 519–526, 2004PubMedCrossRefGoogle Scholar
  50. Gundacker C, Gencik M, Hengstschläger M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat Res Rev Mutat, 705: 130–140, 2010CrossRefGoogle Scholar
  51. Thévenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. BioMetals, 23: 857–875, 2010PubMedCrossRefGoogle Scholar
  52. Leazer TM, Klaassen CD. The Presence of xenobiotic transporters in rat placenta. Drug Metab Dispos, 31: 153–167, 2003PubMedCrossRefGoogle Scholar
  53. Urbach J, Boadi W, Brandes JM, et al. Effect of inorganic mercury on in vitro placental nutrient transfer and oxygen consumption. Reprod Toxicol, 6: 69–75, 1992PubMedCrossRefGoogle Scholar
  54. Boadi WY, Urbach J, Brandes JM, et al. In vitro effect of mercury on enzyme activities and its accumulation in the first-trimester human placenta. Environ Res, 57: 96–106, 1992PubMedCrossRefGoogle Scholar
  55. Boadi WY, Shurtz-Swirski R, Barnea ER, et al. The influence of mercury on the secretion of human chorionic gonadotropin in superfused young placental tissue. Pharmacol Toxicol, 71: 19–23, 1992PubMedCrossRefGoogle Scholar
  56. Boadi WY, Urbach J, Brandes JM, et al. In vitro exposure to mercury and cadmium alters term human placental membrane fluidity. Toxicol Appl Pharm, 116: 17–23, 1992CrossRefGoogle Scholar
  57. Lafond J, Hamel A, Takser L, et al. Low environmental contamination by lead in pregnant women: effect on calcium transfer in human placental syncytiotrophoblasts. J Toxicol Env Hea A, 67: 1069–1079, 2004CrossRefGoogle Scholar
  58. Reichrtova E, Dorociak F, Palkovicova L. Sites of lead and nickel accumulation in the placental tissue. Hum Exp Toxicol, 17: 176–181, 1998PubMedCrossRefGoogle Scholar
  59. Lin FJ, Fitzpatrick JW, Iannotti CA, et al. Effects of cadmium on trophoblast calcium transport. Placenta, 18: 341–356, 1997PubMedCrossRefGoogle Scholar
  60. Tsutsumi R, Hiroi H, Momoeda M, et al. Induction of early decidualization by cadmium, a major contaminant of cigarette smoke. Fertil Steril, 91: 1614–1617, 2009PubMedCrossRefGoogle Scholar
  61. Alvarez MM, Chakraborty C. Cadmium inhibits motility factor-dependent migration of human trophoblast cells. Toxicol In Vitro, 25: 1926–1933, 2011PubMedCrossRefGoogle Scholar
  62. Stasenko S, Bradford EM, Piasek M, et al. Metals in human placenta: focus on the effects of cadmium on steroid hormones and leptin. J Appl Toxicol, 30: 242–253, 2010PubMedCrossRefGoogle Scholar
  63. Kawai M, Swan KF, Green AE, et al. Placental endocrine disruption induced by cadmium: effects on P450 cholesterol side-chain cleavage and 3β-hydroxysteroid dehydrogenase enzymes in cultured human trophoblasts. Biol Reprod, 67: 178–183, 2002PubMedCrossRefGoogle Scholar
  64. Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet, 43: 487–514, 2004PubMedCrossRefGoogle Scholar
  65. Myllynen P, Immonen E, Kummu M, et al. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Met, 5: 1483–1499, 2009CrossRefGoogle Scholar
  66. Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos, 38: 1623–1635, 2010PubMedCrossRefGoogle Scholar
  67. Jauniaux E, Gulbis B, Burton GJ, et al. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus – a review. Placenta, 24: S86–S93, 2003PubMedCrossRefGoogle Scholar
  68. Pasanen M. The expression and regulation of drug metabolism in human placenta. Adv Drug Deliver Rev, 38: 81–97, 1999CrossRefGoogle Scholar
  69. McAleer MF, Tuan RS. Metallothionein protects against severe oxidative stress-induced apoptosis of human trophoblastic cells. In Vitro Mol Toxicol, 14: 219–231, 2001CrossRefGoogle Scholar
  70. Cordon-Cardo C, O'Brien J, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem, 38: 1277–1287, 1990PubMedCrossRefGoogle Scholar
  71. St-Pierre MV, Serrano MA, Macias RIR, et al. Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol Regul Integr Comp Physiol, 279: R1495–R1503, 2000PubMedGoogle Scholar
  72. Evseenko DA, Paxton JW, Keelan JA. ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol Regul Integr Comp Physiol, 290: R1357–R1365, 2006PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Medical GeneticsMedical University of ViennaViennaAustria

Personalised recommendations