Wiener Medizinische Wochenschrift

, Volume 161, Issue 3–4, pp 80–88 | Cite as

Actovegin®: a biological drug for more than 5 decades

  • Florian Buchmayer
  • Johannes Pleiner
  • Martin W. Elmlinger
  • Gereon Lauer
  • Gerfried Nell
  • Harald H. Sitte
Review

Summary

Actovegin® is a biological drug manufactured from a natural source: it is a calf blood hemodialysate. Its therapeutic benefits stem from a variety of pharmacodynamic actions that can be summarized to a common goal, i.e. the enhancement of cellular metabolism; this results from an insulin-like activity mediated by Inositol-phospho-oligosaccharides. Actovegin® results in beneficial effects in several pathophysiological clinical settings including malfunction of the blood circulation and trophic disturbances in the brain, impairment of peripheral blood circulation and associated diseases, dermal transplants and acute and chronic wounds. Here, we give an overview of the pharmacodynamic actions of calf-blood hemidialysate and its beneficial effects in a variety of clinical settings.

Keywords

Actovegin® Hemodialysate Insulin-like activity 

Actovegin®: ein Biologikum seit mehr als 5 Dekaden

Zusammenfassung

Actovegin® ist ein biologisches Pharmakon, das von einer natürlichen Quelle stammt: es handelt sich um ein Kälberblut-Hämidialysat. Seine therapeutischen Vorzüge rühren von unterschiedlichen pharmakodynamischen Aktivitäten her, die eine gemeinsame Zielrichtung verfolgen, nämlich die Verbesserung des zellulären Stoffwechsels. Dies resultiert von einer Insulin-artigen Aktivität die von Inositol-phospho-oligosacchariden mediiert wird. Actovegin® erzielt günstige Effekte in verschiedenen pathophysiologischen klinischen Situationen; hierzu zählen Fehlfunktionen der Blutzirkulation und verwandter Erkrankungen, Hauttransplantationen sowie akute und chronische Wunden. In diesem Übersichtsartikel fassen wir die unterschiedlichen pharmakodynamischen Wirkungen des Kälberblut-Hemidialysats und seine wesentlichen klinischen Wirkungen zusammen.

Schlüsselwörter

Actovegin® Hämodialysat Insulin-artige Aktivität 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann W, Forster H, Mehnert H. Experimental studies in animals on the effect of a protein-free blood extract on the metabolism of glucose. Arzneimittel-Forschung/Drug Research, 18: 1023–1027, 1968Google Scholar
  2. Parade D, Biro G, Ketti H, et al. Studies on the insulin-like action of a lowmolecular-weight blood extract on the glucose metabolism of isolated adipose tissue of the rat in vitro. Arzneimittel-Forschung/Drug Research, 18: 1019–1021, 1968Google Scholar
  3. Saltiel AR, Cuatrecasas P. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci U S A, 83: 5793–5797, 1986CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fox JA, Soliz NM, Saltiel AR. Purification of a phosphatidylinositol-glycan-specific phospholipase C from liver plasma membranes: a possible target of insulin action. Proc Natl Acad Sci U S A, 84: 2663–2667, 1987CrossRefPubMedPubMedCentralGoogle Scholar
  5. Saltiel AR, Sorbara-Cazan LR. Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochem Biophys Res Commun, 149: 1084–1092, 1987CrossRefPubMedGoogle Scholar
  6. Mato JM, Kelly KL, Abler A, et al. Identification of a novel insulin-sensitive glycophospholipid from H35 hepatoma cells. J Biol Chem, 262: 2131–2137, 1987PubMedGoogle Scholar
  7. Kellerer M, Machicao F, Berti L, et al. Inositol phospho-oligosaccharides from rat fibroblasts and adipocytes stimulate 3-O-methylglucose transport. Biochem J, 295: 699–704, 1993CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bachmann H. Wirkung von Actihaemyl auf den Kohlenhydratstoffwechsel – Untersuchungen in vivo; Dissertation, Medizinische Poliklinik der Universität München, 1968Google Scholar
  9. Obermaier-Kusser B, Muhlbacher C, Mushack J, et al. Further evidence for a two-step model of glucose-transport regulation. Inositol phosphate-oligosaccharides regulate glucose-carrier activity. Biochem J, 261: 699–705, 1989CrossRefPubMedPubMedCentralGoogle Scholar
  10. Mohnike G, Lippmann HG, Dieckmann I, et al. Zur Wirkung eines Extraktes aus Kälberblut im Stoffwechsel der Glucose. Arzneimittel-Forschung/Drug Research, 18: 1021, 1968Google Scholar
  11. Machicao F, Mühlbacher Ch, Haring HU. Inositol phospho-ooligosaccharides from a dialysate (Actovegin) obtained from blood mimic the effect on lipogenesis glucose transport and lipolysis in rat adipocytes. Aktuelle Endokrinologie und Stoffwechsel, 10: 111, 1989Google Scholar
  12. Machicao F, Sixt B, Seffer E, et al. Adipocytes release inositol phosphate oligosaccharides with insulin like activity similarly as found in hemodialysate. IV International Symposium on Insulin Receptor and Insulin Action, Verona, Italy, p. 124, 1990Google Scholar
  13. Machicao F, Mushack J, Seffer E, et al. Mannose, glucosamine and inositol monophosphate inhibit the effects of insulin on lipogenesis. Further evidence for a role for inositol phosphate-oligosaccharides in insulin action. Biochem J, 266: 909–916, 1990PubMedPubMedCentralGoogle Scholar
  14. Suzuki S, Sugawara K, Satoh Y, et al. Insulin stimulates the generation of two putative insulin mediators, inositol-glycan and diacylglycerol in BC3H-1 myocytes. J Biol Chem, 266: 8115–8121, 1991PubMedGoogle Scholar
  15. Jager KH, Leybold K, Mittenzwei H, et al. The promotional of cell respiration by a blood extract. Arzneimittel-Forschung/Drug Research, 15: 750–754, 1965Google Scholar
  16. de Groot H, Brecht M, Machicao F. Evidence for a factor protective against hypoxic liver parenchymal cell injury in a protein-free blood extract. Res Commun Chem Pathol Pharmacol, 68: 125–128, 1990PubMedGoogle Scholar
  17. Brecht M, de Groot H. Protection from hypoxic injury in cultured hepatocytes by glycine, alanine and serine. Amino Acids, 6: 25–35, 1994CrossRefPubMedGoogle Scholar
  18. Schäfer G. Untersuchungsbefund (Report) Wirkung von Actovegin bzw Placebo auf die Sauerstoffaufnahme isolierter Leberparenchym Zellen. Internal Company Report, Institut für Klinische Biochemie, Medizinische Hochschule Hannover, 1977Google Scholar
  19. Reichel H, Weiss C, Leichtweiss HP. The effects of a blood extract on the oxygen uptake of isolated artificially perfused kidneys and skeletal muscles in rats. Arzneimittel-Forschung/Drug Research, 15: 756–757, 1965PubMedGoogle Scholar
  20. Kuninaka T, Senga Y, Senga H, et al. Nature of enhanced mitochondrial oxidative metabolism by a calf blood extract. J Cell Physiol, 146: 148–155, 1991CrossRefPubMedGoogle Scholar
  21. Schwabe K. Experimentelle Untersuchungen mit einem eiweißfreien Extrakt aus Vollblut von Kälbern mit hoher RES-Aktivität. Arzneimittel-Forschung/Drug Research, 16: 364–370, 1966PubMedGoogle Scholar
  22. Pichotka J, Jager KH, Pape J, et al. Wirkung eines Blutextraktes auf den Stoffwechsel einfacher Systeme. Arzneimittel-Forschung/Drug Research, 15: 754, 1965PubMedGoogle Scholar
  23. Rammler L. Actihaemyl/ATP-Konzentrationen in Meerschweinchen-Gerhirnhomogenaten. Internal Company Report, Pharmakologische Abteilung Hormon-Chemie München, 1974Google Scholar
  24. Chanh PH, Chanh AP, Basile JP, et al. Cardiovascular activity of a deproteinized blood extract. Arzneimittel-Forschung/Drug Research, 30: 1874–1877, 1980PubMedGoogle Scholar
  25. Chanh PH, Chanh AP, van Thoai MN, et al. Effects of deproteinized blood extract on respiratory and hemodynamic modifications induced by hypoxia in the anaesthetized animal. Arzneimittel-Forschung/Drug Research, 30: 1508–1510, 1980Google Scholar
  26. Neinhardt J. Extra- und intraorale Wundheilung. Dissertation/PhD Thesis, Universitäts- und Poliklinik für Zahn-, Mund-, und Kieferkrankheiten Würzburg, 1967Google Scholar
  27. Mochida H, Kikuchi T, Tanaka H, et al. Influence of Actovegin containing infusion solutions on wound healing and function of the intestinal tract in rats. Pharmacology and Therapeutics, 17: 789–797, 1989Google Scholar
  28. Schönwald D, Sixt B, Machicao F, et al. Enhanced proliferation of coronary endothelial cells in response to growth factors is synergized by hemodialysate compounds in vitro. Res Exp Med (Berl), 191: 259–272, 1991CrossRefGoogle Scholar
  29. Miltenburger HG, Baschong W, Horner V, et al. Cooperative effects in vitro on fibroblast and keratinocyte functions related to wound healing by transforming growth factor-beta and a low molecular weight fraction from hemolyzed blood. Arzneimittel-Forschung/Drug Research, 44: 872–876, 1994PubMedGoogle Scholar
  30. Spessotto P, Dri P, Baschong W, et al. Effect of a protein-free dialysate from calf blood on human monocyte differentiation in vitro. Arzneimittel-Forschung/Drug Research, 43: 747–751, 1993PubMedGoogle Scholar
  31. Bauer D, Locker A. The radioprotective effect of solcoseryl. Experientia, 30: 643, 1974CrossRefPubMedGoogle Scholar
  32. Barth G, Graebner HF, Lotz H. Therapy of lethal radiation injury with Actihaemyin an animal experiment. Strahlentherapie, 138: 714–723, 1969PubMedGoogle Scholar
  33. Basu SK, Srinivasan MN, Chuttani K, et al. Evaluation of some radioprotectors by the survival study of rats exposed to lethal dose of whole body gamma radiation. J Radiat Res (Tokio), 26: 395–403, 1985CrossRefGoogle Scholar
  34. Tamou S, Trott KR. Modification of late radiation damage in the rectum of rats by deproteinized calf blood serum (ActoHorm) and pentoxifylline (PTX). Strahlenther Onkologie, 170: 415–420, 1994Google Scholar
  35. Sigdestad CP, Doak KW, Grdina DJ. Differential protection of radiation-induced DNA single-strand breaks and cell survival by solcoseryl. Experientia, 44: 707–708, 1988CrossRefPubMedGoogle Scholar
  36. Ziegler D, Movsesyan L, Mankovsky B, et al. Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients. Diabetes Care, 32: 1479–1484, 2009CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wolff VR. Effect of a protein-free hemoderivative on recovering capability of rat liver following 60 minutes of hemorrhagic shock. Arzneimittel-Forschung/Drug Research, 25: 388–392, 1975PubMedGoogle Scholar
  38. Giarola P. Effects of blood extract on plasma lipids, blood coagulation, fibrinolysis and platelet aggregation in experimental hypercholesterolemia of rabbits. Arzneimittel-Forschung/Drug Research, 24: 925–928, 1974PubMedGoogle Scholar
  39. Somogyi E, Sotonyi P, Nemes A. The effects of a deproteinized blood extract on the myocardial changes developing during experimentally induced intermittent hypoxia. Arzneimittel-Forschung/Drug Research, 29: 1376–1381, 1979PubMedGoogle Scholar
  40. Eichler K, Völker R. Cardiotonic effect of blood extracts on myocardial tissue; in Cardiotonische Wirkung von Blutextrakten auf das Herzmuskelgewebe. Arzneimittel-Forschung/Drug Research, 21: 1750–1752, 1971PubMedGoogle Scholar
  41. Lanner G, Argyropoulos G. Pharmacological effect of Solcoseryl on the metabolism of the brain. Animal experiments and clinical research. Wien Med Wochenschrift, 125: 681–685, 1975Google Scholar
  42. Krüger G, Quadbeck G. The electroencephalogram of the rat in oxygen deficiency as an indicator of drug effects on cerebral metabolism. Arzneimittel-Forschung/Drug Research, 22: 451–456, 1972PubMedGoogle Scholar
  43. Quadbeck G, Claver B, Minet G. The influence of stimulants and antidepressants on the EEG amplitude in the rat. Arzneimittelforschung, 14 (Suppl 5): 1964Google Scholar
  44. Hoyer S, Betz K. Elimination of the delayed postischemic energy deficit in cerebral cortex and hippocampus of aged rats with a dried, deproteinized blood extract (Actovegin). Arch Gerontol Geriatr, 9: 181–192, 1989CrossRefPubMedGoogle Scholar
  45. Mintz M, Knowlton B, Myslobodsky MS. Effect of nootropic Solcoseryl on kainic acid-induced excitotoxic brain injury. Pharmacol Biochem Behav, 45: 55–58, 1993CrossRefPubMedGoogle Scholar
  46. Schaffler K, Wauschkuhn CH, Hauser B. Study to evaluate the encephalotropic potency of a hemodialysate. Controlled study using electro-retinography and visual evoked potentials under hypoxic conditions in human volunteers (preliminary communication). Arzneimittelforschung, 41: 699–704, 1991PubMedGoogle Scholar
  47. Saletu B, Grunberger J, Linzmayer L, et al. EEG brain mapping and psychometry in age-associated memory impairment after acute and 2-week infusions with the hemoderivative Actovegin: double-blind, placebo-controlled trials. Neuropsychobiology, 24: 135–148, 1990CrossRefPubMedGoogle Scholar
  48. Semlitsch HV, Anderer P, Saletu B, et al. Topographic mapping of cognitive event-related potentials in a double-blind, placebo-controlled study with the hemoderivative Actovegin in age-associated memory impairment. Neuropsychobiology, 24: 49–56, 1990CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Florian Buchmayer
    • 1
  • Johannes Pleiner
    • 2
  • Martin W. Elmlinger
    • 3
  • Gereon Lauer
    • 3
  • Gerfried Nell
    • 1
  • Harald H. Sitte
    • 1
  1. 1.Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
  2. 2.Department of Clinical PharmacologyMedical University of ViennaViennaAustria
  3. 3.Nycomed GmbH, Biomarker DevelopmentKonstanzGermany

Personalised recommendations