Skip to main content

High Intensity Training (HIT) für die Verbesserung der Ausdauerleistungsfähigkeit von Normalpersonen und im Präventions- & Rehabilitationsbereich

High Intensity Training (HIT) for the improvement of endurance capacity of recreationally active people and in prevention & rehabilitation

Summary

Although intensive exercise protocols are commonly used in practical training and scientific studies, there is recently a great scientific discussion about "high intensity (interval) training" (HIT). New are the large amounts of studies and the more detailed knowledge about the physiological responses and adaptations to HIT in comparison to the classic high volume, low intensity endurance training. The present article summarizes the current knowledge about HIT in endurance exercise for clinical applications. In the first part, molecular and cellular adaptations to HIT are discussed in comparison to low intensity high volume training. Furthermore, studies are summarized which compare HIT vs. HVT in the field of prevention and rehabilitation. Terminally the differences in physiological stimuli of both training interventions are considered.

Zusammenfassung

Auch wenn intensive Belastungen prinzipiell nicht neu sind, so ist mit dem "High Intensity (Interval) Training" (HIT) in recht kurzer Zeit eine derartige Methode vehement in die internationale wissenschaftliche Diskussion gekommen. Neu ist die große Anzahl an Studien und die immer detaillierter werdenden Erkenntnisse über die physiologischen Reaktionen von HIT (im Vergleich zum klassischen, niedrigintensiven, umfangsorientierten Ausdauertraining). Der vorliegende Artikel fasst den aktuellen Erkenntnisstand zum Thema HIT (Konditionsbereich Ausdauer) im Präventions- und Rehabilitationsbereich zusammen. Diskutiert werden die Anpassungserscheinungen von HIT im Vergleich zum klassischen Ausdauertraining. Außerdem wird versucht, Unterschiede bei Stimuli und physiologischen Wirkungsmechanismen zwischen HIT und HVT zu identifizieren.

This is a preview of subscription content, access via your institution.

Literatur

  • Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116: 1081–1093, 2007

    Article  PubMed  Google Scholar 

  • Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med, 116: 682–692, 2004

    Article  PubMed  Google Scholar 

  • Booth ML, Bauman A, Owen N, et al. Physical activity preferences, preferred sources of assistance, and perceived barriers to increased activity among physically inactive Australians. Prev Med, 26: 131–137, 1997

    CAS  Article  PubMed  Google Scholar 

  • Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med, 3: 346–356, 1986

    CAS  Article  PubMed  Google Scholar 

  • Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev, 36: 58–63, 2008

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586: 151–160, 2008

    CAS  Article  PubMed  Google Scholar 

  • Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol, 575: 901–911, 2006

    CAS  Article  PubMed  Google Scholar 

  • Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol, 96: 97–105, 2006

    CAS  Article  PubMed  Google Scholar 

  • Gorostiaga EM, Walter CB, Foster C, et al. Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol Occup Physiol, 63: 101–107, 1991

    CAS  Article  PubMed  Google Scholar 

  • Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc, 39: 665–671, 2007

    Article  PubMed  Google Scholar 

  • Eddy DO, Sparks KL, Adelizi DA. The effects of continuous and interval training in women and men. Eur J Appl Physiol Occup Physiol, 37: 83–92, 1977

    CAS  Article  PubMed  Google Scholar 

  • Gormley SE, Swain DP, High R, et al. Effect of Intensity of Aerobic Training on VO2max. Med Sci Sports Exerc, 40: 1336–1343, 2008

    Article  PubMed  Google Scholar 

  • Iaia FM, Hellsten Y, Nielsen JJ, et al. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol, 106: 73–80, 2009

    Article  PubMed  Google Scholar 

  • McKay BR, Paterson DH, Kowalchuk JM. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol, 107: 128–138, 2009

    Article  PubMed  Google Scholar 

  • Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc, 28: 1327–1330, 1996

    CAS  PubMed  Google Scholar 

  • Iaia FM, Thomassen M, Kolding H, et al. Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol, 294: R966–R974, 2008

    CAS  PubMed  Google Scholar 

  • Tjonna AE, Lee SJ, Rognmo O, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation, 118: 346–354, 2008

    Article  PubMed  Google Scholar 

  • Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol, 292: R1594–R1602, 2007

    CAS  PubMed  Google Scholar 

  • Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol, 554: 857–870, 2004

    CAS  Article  PubMed  Google Scholar 

  • Terada S, Tabata I, Higuchi M. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn J Physiol, 54: 47–52, 2004

    CAS  Article  PubMed  Google Scholar 

  • Terada S, Yokozeki T, Kawanaka K, et al. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol, 90: 2019–2024, 2001

    CAS  PubMed  Google Scholar 

  • Gibala MJ, McGee SL, Garnham AP, et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1{alpha} in human skeletal muscle. J Appl Physiol, 106: 929–934, 2009

    CAS  Article  PubMed  Google Scholar 

  • Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol, 81: 1484–1487, 1996

    CAS  PubMed  Google Scholar 

  • MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol, 84: 2138–2142, 1998

    CAS  Article  PubMed  Google Scholar 

  • Perry CG, Heigenhauser GJ, Bonen A, et al. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab, 33: 1112–1123, 2008

    CAS  Article  PubMed  Google Scholar 

  • Rodas G, Ventura JL, Cadefau JA, et al. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol, 82: 480–486, 2000

    CAS  Article  PubMed  Google Scholar 

  • Talanian JL, Galloway SD, Heigenhauser GJ, et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol, 102: 1439–1447, 2007

    CAS  Article  PubMed  Google Scholar 

  • Clark SA, Chen ZP, Murphy KT, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab, 286: E737–E743, 2004

    CAS  Article  PubMed  Google Scholar 

  • Pilegaard H, Domino K, Noland T, et al. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol, 276: E255–E261, 1999

    CAS  PubMed  Google Scholar 

  • Juel C, Klarskov C, Nielsen JJ, et al. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab, 286: E245–E251, 2004

    CAS  Article  PubMed  Google Scholar 

  • Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol, 75: 7–13, 1997

    CAS  Article  PubMed  Google Scholar 

  • Swain DP, Franklin BA. Is there a threshold intensity for aerobic training in cardiac patients? Med Sci Sports Exerc, 34: 1071–1075, 2002

    Article  PubMed  Google Scholar 

  • Earnest CP. Exercise interval training: an improved stimulus for improving the physiology of pre-diabetes. Med Hypotheses, 71: 752–761, 2008

    CAS  Article  PubMed  Google Scholar 

  • Wen H, Gao Y, An JY. Comparison of high-intensity and anaerobic threshold programs in rehabilitation for patients with moderate to severe chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi, 31: 571–576, 2008

    PubMed  Google Scholar 

  • Arnardottir RH, Boman G, Larsson K, et al. Interval training compared with continuous training in patients with COPD. Respir Med, 101: 1196–1204, 2007

    Article  PubMed  Google Scholar 

  • Vogiatzis I, Nanas S, Roussos C. Interval training as an alternative modality to continuous exercise in patients with COPD. Eur Respir J, 20: 12–19, 2002

    CAS  Article  PubMed  Google Scholar 

  • Harmer AR, Chisholm DJ, McKenna MJ, et al. Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care, 31: 2097–2102, 2008

    CAS  Article  PubMed  Google Scholar 

  • Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115: 3086–3094, 2007

    Article  PubMed  Google Scholar 

  • Rognmo O, Hetland E, Helgerud J, et al. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil, 11: 216–222, 2004

    Article  PubMed  Google Scholar 

  • Amundsen BH, Rognmo O, Hatlen-Rebhan G, et al. High-intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J, 42: 110–117, 2008

    Article  PubMed  Google Scholar 

  • Warburton DE, McKenzie DC, Haykowsky MJ, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol, 95: 1080–1084, 2005

    Article  PubMed  Google Scholar 

  • Tjonna AE, Stolen TO, Bye A, et al. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci (Lond), 116: 317–326, 2009

    Article  Google Scholar 

  • Ehsani AA, Martin WH III, Heath GW, et al. Cardiac effects of prolonged and intense exercise training in patients with coronary artery disease. Am J Cardiol, 50: 246–254, 1982

    CAS  Article  PubMed  Google Scholar 

  • Ehsani AA, Biello DR, Schultz J, et al. Improvement of left ventricular contractile function by exercise training in patients with coronary artery disease. Circulation, 74: 350–358, 1986

    CAS  PubMed  Google Scholar 

  • Jensen BE, Fletcher BJ, Rupp JC, et al. Training level comparison study. Effect of high and low intensity exercise on ventilatory threshold in men with coronary artery disease. J Cardiopulm Rehabil, 16: 227–232, 1996

    CAS  Article  PubMed  Google Scholar 

  • Adachi H, Koike A, Obayashi T, et al. Does appropriate endurance exercise training improve cardiac function in patients with prior myocardial infarction? Eur Heart J, 17: 1511–1521, 1996

    CAS  PubMed  Google Scholar 

  • Skinner JS. Physical activity and health: What is the importance of training intensity? Dtsch Z Sportmed, 52: 211–214, 2001

    Google Scholar 

  • O'Donovan G, Owen A, Bird SR, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol, 98: 1619–1625, 2005

    Article  PubMed  Google Scholar 

  • Butcher SJ, Jones RL. The impact of exercise training intensity on change in physiological function in patients with chronic obstructive pulmonary disease. Sports Med, 36: 307–325, 2006

    Article  PubMed  Google Scholar 

  • Steinacker JM, Liu Y, Stilgenbauer F, et al. Physical exercise in patients with heart failure. Dtsch Z Sportmed, 55: 124–130, 2004

    Google Scholar 

  • Hagberg JM. Physiologic adaptations to prolonged high-intensity exercise training in patients with coronary artery disease. Med Sci Sports Exerc, 23: 661–667, 1991

    CAS  PubMed  Google Scholar 

  • Hauer K, Niebauer J, Weiss C, et al. Myocardial ischemia during physical exercise in patients with stable coronary artery disease: predictability and prevention. Int J Cardiol, 75: 179–186, 2000

    CAS  Article  PubMed  Google Scholar 

  • Adams J, Ogola G, Stafford P, et al. High-intensity interval training for intermittent claudication in a vascular rehabilitation program. J Vasc Nurs, 24: 46–49, 2006

    Article  PubMed  Google Scholar 

  • Meyer K, Samek L, Schwaibold M, et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc, 29: 306–312, 1997

    CAS  PubMed  Google Scholar 

  • Meyer K, Foster C. New approaches to muscle training in cardiovascular patients. Dtsch Z Sportmed, 55: 70–74, 2004

    Google Scholar 

  • Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med, 32: 53–73, 2002

    Article  PubMed  Google Scholar 

  • Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab, 34: 428–432, 2009

    CAS  Article  PubMed  Google Scholar 

  • Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol, 97: 1119–1128, 2004

    Article  PubMed  Google Scholar 

  • Cooper G. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med, 48: 13–23, 1997

    CAS  Article  PubMed  Google Scholar 

  • Fries RB, Wallace WA, Roy S, et al. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutat Res, 579: 172–181, 2005

    CAS  PubMed  Google Scholar 

  • Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery, 90: 262–270, 1981

    CAS  PubMed  Google Scholar 

  • Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med, 54: 17–28, 2003

    CAS  Article  PubMed  Google Scholar 

  • Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem, 277: 23111–23115, 2002

    CAS  Article  PubMed  Google Scholar 

  • Lu H, Dalgard CL, Mohyeldin A, et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem, 280: 41928–41939, 2005

    CAS  Article  PubMed  Google Scholar 

  • Hunt TK, Aslam RS, Beckert S, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal, 9: 1115–1124, 2007

    CAS  Article  PubMed  Google Scholar 

  • Constant JS, Feng JJ, Zabel DD, et al. Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen, 8: 353–360, 2000

    CAS  Article  PubMed  Google Scholar 

  • Beckert S, Farrahi F, Aslam RS, et al. Lactate stimulates endothelial cell migration. Wound Repair Regen, 14: 321–324, 2006

    Article  PubMed  Google Scholar 

  • Nareika A, He L, Game BA, et al. Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-kappaB transcriptional activities. Am J Physiol Endocrinol Metab, 289: E534–E542, 2005

    CAS  Article  PubMed  Google Scholar 

  • Milovanova TN, Bhopale VM, Sorokina EM, et al. Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol, 28: 6248–6261, 2008

    CAS  Article  PubMed  Google Scholar 

  • Brooks GA, Brooks TG, Brooks S. Laktat als metabolisches Signal der Genexpression. Dtsch Z Sportmed, 59: 280–286, 2008

    CAS  Google Scholar 

  • Hashimoto T, Hussien R, Oommen S, et al. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J, 21: 2602–2612, 2007

    CAS  Article  PubMed  Google Scholar 

  • Sonou T, Higuchi M, Terada S. An acute bout of high-intensity intermittent swimming induces glycogen supercompensation in rat skeletal muscle. Eur J Sport Sci, 8: 413–420, 2008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Wahl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wahl, P., Hägele, M., Zinner, C. et al. High Intensity Training (HIT) für die Verbesserung der Ausdauerleistungsfähigkeit von Normalpersonen und im Präventions- & Rehabilitationsbereich. Wien Med Wochenschr 160, 627–636 (2010). https://doi.org/10.1007/s10354-010-0857-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-010-0857-3

Keywords

  • High intensity training
  • Endurance
  • Patients
  • Sedentary
  • Molecular and cellular adaptations

Schlüsselwörter

  • Hoch intensives Training
  • Ausdauer
  • Molekular-zelluläre Adaptationen
  • Physiologische Wirkungsmechanismen