Skip to main content

Cell biology of osteoimmunology

Zellbiologische Aspekte der Osteoimmunologie

Zusammenfassung

Osteoimmunologie definiert einen Forschungsbereich mit dem Schwerpunkt der Kommunikation zwischen dem Immunsystem und dem muskuloskeletalen System. Wir stehen erst am Beginn, die grundlegenden Prinzipien dieser zellulären Kommunikation zu verstehen. Es scheint, dass nahezu alle Immunzellen in der Lage sind, mit Osteoblasten, Osteoklasten und deren Vorläuferzellen zu kommunizieren – und vice versa. Osteoporose, rheumatoide Arthritis und Parodontitis zählen zu den Erkrankungen, deren Pathogenese im Zusammenhang mit der Osteoimmunologie steht, insgesamt Krankheiten mit hohem Einfluss auf die Lebensqualität und mit zunehmender sozioökonomischer Bedeutung. Zum besseren Verständnis der Pathogenese müssen die Hauptwege der Kommunikation zwischen dem Immunsystem und dem muskuloskeletalen System erkannt werden. Unser bisheriges Verständnis schaffte bereits die wissenschaftliche Grundlage für die Entwicklung gezielter Therapien. Allerdings sind weitere Entschlüsselungen dieser Kommunikationen auf zellulärer und molekularer Ebene notwendig und bleiben eine Herausforderung.

Summary

Osteoimmunology is defined as the research area focusing on the crosstalk between the immune system and the muskoskeletal system. After nearly a decade of research, we are now beginning to understand the basic principles of this crosstalk. It seems that almost all immune cells are capable of communicating with osteoblasts, osteoclasts, and their respective progenitors – and vice versa. Diseases that fall into the category of osteoimmunology including osteoporosis, rheumatoid arthritis, and periodontal disease are of particular significance considering their implications in quality of life, their increased incidence in the population, and socioeconomic issues. To better understand the underlying pathogenesis, the main pathways of the crosstalk between the immune system and the muskoskeletal system need to be uncovered. Our current understanding has already provided the scientific basis for the development of targeted therapies. However, the challenge of future studies is to further decipher this crosstalk at cellular and molecular levels.

This is a preview of subscription content, access via your institution.

References

  1. Arron JR, Choi Y. Bone versus immune system. Nature, 408: 535–536, 2000

    CAS  Article  PubMed  Google Scholar 

  2. Rothe A, Power BE, Hudson PJ. Therapeutic advances in rheumatology with the use of recombinant proteins. Nat Clin Pract Rheumatol, 4: 605–614, 2008

    CAS  Article  PubMed  Google Scholar 

  3. Sipos W, Pietschmann P, Rauner M. Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immune-mediated bone and joint diseases. Curr Med Chem, 15: 127–136, 2008

    CAS  Article  PubMed  Google Scholar 

  4. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol, 5: 667–676, 2009

    CAS  Article  PubMed  Google Scholar 

  5. Schett G. Osteoimmunology in rheumatic diseases. Arthritis Res Ther, 11: 210, 2009

    Article  PubMed  Google Scholar 

  6. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev, 29: 403–440, 2008

    CAS  Article  PubMed  Google Scholar 

  7. Rauner M, Sipos W, Pietschmann P. Osteoimmunology. Int Arch Allergy Immunol, 143: 31–48, 2007

    Article  PubMed  Google Scholar 

  8. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol, 7:292–304, 2007

    CAS  Article  PubMed  Google Scholar 

  9. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res, 20: 177–184, 2005

    CAS  Article  PubMed  Google Scholar 

  10. Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev, 23: 279–302, 2002

    CAS  Article  PubMed  Google Scholar 

  11. Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol, 252: 68–80, 2008

    CAS  Article  PubMed  Google Scholar 

  12. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol, 7: 429–442, 2007

    CAS  Article  PubMed  Google Scholar 

  13. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000, 40: 11–28, 2006

    Article  PubMed  Google Scholar 

  14. de Pablo P, Chapple IL, Buckley CD, Dietrich T. Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol, 5: 218–224, 2009

    Article  PubMed  Google Scholar 

  15. Graat-Verboom L, Wouters EF, Smeenk FW, Van den Borne BE, Lunde R, Spruit MA. Current status of research on osteoporosis in COPD: a systematic review. Eur Respir J, 34: 209–218, 2009

    CAS  Article  PubMed  Google Scholar 

  16. Tilg H, Moschen AR, Kaser A, Pines A, Dotan I. Gut, inflammation and osteoporosis: basic and clinical concepts. Gut, 57: 684–694, 2008

    CAS  Article  PubMed  Google Scholar 

  17. Schett G, Kiechl S, Weger S, Pederiva A, Mayr A, Petrangeli M, Oberhollenzer F, Lorenzini R, Redlich K, Axmann R, Zwerina J, Willeit J. High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med, 166: 2495–2501, 2006

    CAS  Article  PubMed  Google Scholar 

  18. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2: 584–593, 2002

    CAS  Article  PubMed  Google Scholar 

  19. Roodman GD. Mechanisms of bone metastasis. N Engl J Med, 350: 1655–1664, 2004

    CAS  Article  PubMed  Google Scholar 

  20. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med, 343: 338–344, 2000

    CAS  Article  PubMed  Google Scholar 

  21. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med, 343: 37–49, 2000

    CAS  Article  PubMed  Google Scholar 

  22. Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med, 343: 108–117, 2000

    CAS  Article  PubMed  Google Scholar 

  23. Zaidi M. Skeletal remodeling in health and disease. Nat Med, 13:791–801, 2007

    CAS  Article  PubMed  Google Scholar 

  24. Eriksen EF, Eghbali-Fatourechi GZ, Khosla S. Remodeling and vascular spaces in bone. J Bone Miner Res, 22: 1–6, 2007

    CAS  Article  PubMed  Google Scholar 

  25. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev, 29: 155–192, 2008

    CAS  Article  PubMed  Google Scholar 

  26. Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann NY Acad Sci, 1143: 123–150, 2008

    CAS  Article  PubMed  Google Scholar 

  27. Zwerina J, Redlich K, Polzer K, Joosten L, Kronke G, Distler J, Hess A, Pundt N, Pap T, Hoffmann O, Gasser J, Scheinecker C, Smolen JS, van den Berg W, Schett G. TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci USA, 104:11742–11747, 2007

    CAS  Article  PubMed  Google Scholar 

  28. Polzer K, Joosten L, Gasser J, Distler JH, Ruiz G, Baum W, Redlich K, Bobacz K, Smolen JS, van den Berg W, Schett G, Zwerina J. IL-1 is essential for systemic inflammatory bone loss. Ann Rheum Dis, 69(1): 284–290, 2010

    CAS  Article  PubMed  Google Scholar 

  29. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med, 203: 2673–2682, 2006

    CAS  Article  PubMed  Google Scholar 

  30. Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol, 171: 6173–6177, 2003

    CAS  PubMed  Google Scholar 

  31. Pene J, Chevalier S, Preisser L, Venereau E, Guilleux MH, Ghannam S, Moles JP, Danger Y, Ravon E, Lesaux S, Yssel H, Gascan H. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol, 180: 7423–7430, 2008

    CAS  PubMed  Google Scholar 

  32. Gaffen SL, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res, 87: 817–828, 2008

    CAS  Article  PubMed  Google Scholar 

  33. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum, 42: 963–970, 1999

    CAS  Article  PubMed  Google Scholar 

  34. Vernal R, Dutzan N, Chaparro A, Puente J, Antonieta Valenzuela M, Gamonal J. Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis. J Clin Periodontol, 32: 383–389, 2005

    Article  PubMed  Google Scholar 

  35. Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA, 98: 13960–13965, 2001

    CAS  Article  PubMed  Google Scholar 

  36. Goswami J, Hernandez-Santos N, Zuniga LA, Gaffen SL. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol, 39: 2831–2839, 2009

    CAS  Article  PubMed  Google Scholar 

  37. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 212: 8–27, 2006

    CAS  Article  PubMed  Google Scholar 

  38. Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, Herrmann M, Smolen J, Schett G. CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis, 67: 1603–1609, 2008

    CAS  Article  PubMed  Google Scholar 

  39. Zaiss MM, Axmann R, Zwerina J, Polzer K, Guckel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum, 56: 4104–4112, 2007

    CAS  Article  PubMed  Google Scholar 

  40. Isaacs JD. Therapeutic agents for patients with rheumatoid arthritis and an inadequate response to tumour necrosis factor-alpha antagonists. Expert Opin Biol Ther, 9: 1463–1475, 2009

    CAS  Article  PubMed  Google Scholar 

  41. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest, 111: 1221–1230, 2003

    CAS  PubMed  Google Scholar 

  42. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood, 109: 3839–3848, 2007

    CAS  Article  PubMed  Google Scholar 

  43. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat Med, 13: 156–163, 2007

    CAS  Article  PubMed  Google Scholar 

  44. Uderhardt S, Diarra D, Katzenbeisser J, David JP, Zwerina J, Richards WG, Kronke G, Schett G. Blockade of Dickkopf-1 induces fusion of sacroiliac joints. Ann Rheum Dis, 69(3): 592–597, 2010

    CAS  Article  PubMed  Google Scholar 

  45. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood, 113: 517–525, 2009

    CAS  Article  PubMed  Google Scholar 

  46. Colburn NT, Zaal KJ, Wang F, Tuan RS. A role for gamma/delta T cells in a mouse model of fracture healing. Arthritis Rheum, 60: 1694–1703, 2009

    CAS  Article  PubMed  Google Scholar 

  47. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103: 3258–3264, 2004

    CAS  Article  PubMed  Google Scholar 

  48. Testa NG, Dexter TM. The biology of long-term bone marrow cultures and its application to bone marrow transplantation. Curr Opin Oncol, 3: 272–278, 1991

    CAS  Article  PubMed  Google Scholar 

  49. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425: 841–846, 2003

    CAS  Article  PubMed  Google Scholar 

  50. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425: 836–841, 2003

    CAS  Article  PubMed  Google Scholar 

  51. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature, 457: 97–101, 2009

    CAS  Article  PubMed  Google Scholar 

  52. Ballen K. Targeting the stem cell niche: squeezing blood from bones. Bone Marrow Transplant, 39: 655–660, 2007

    CAS  Article  PubMed  Google Scholar 

  53. Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T. Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J Bone Miner Res, 15: 541–549, 2000

    CAS  Article  PubMed  Google Scholar 

  54. Hayer S, Polzer K, Brandl A, Zwerina J, Kireva T, Smolen JS, Schett G. B-cell infiltrates induce endosteal bone formation in inflammatory arthritis. J Bone Miner Res, 23: 1650–1660, 2008

    CAS  Article  PubMed  Google Scholar 

  55. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, Goncalves RB, Valverde P, Dibart S, Li YP, Miranda LA, Ernst CW, Izumi Y, Taubman MA. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol, 169: 987–998, 2006

    CAS  Article  PubMed  Google Scholar 

  56. Yamaguchi M, Ukai T, Kaneko T, Yoshinaga M, Yokoyama M, Ozaki Y, Hara Y. T cells are able to promote lipopolysaccharide-induced bone resorption in mice in the absence of B cells. J Periodontal Res, 43: 549–555, 2008

    CAS  PubMed  Google Scholar 

  57. Horowitz MC, Xi Y, Pflugh DL, Hesslein DG, Schatz DG, Lorenzo JA, Bothwell AL. Pax5-deficient mice exhibit early onset osteopenia with increased osteoclast progenitors. J Immunol, 173: 6583–6591, 2004

    CAS  PubMed  Google Scholar 

  58. Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, Jurdic P, Servet-Delprat C. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood, 104: 4029–4037, 2004

    CAS  Article  PubMed  Google Scholar 

  59. Alnaeeli M, Park J, Mahamed D, Penninger JM, Teng YT. Dendritic cells at the osteo-immune interface: implications for inflammation-induced bone loss. J Bone Miner Res, 22: 775–780, 2007

    CAS  Article  PubMed  Google Scholar 

  60. Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum, 52: 2307–2312, 2005

    CAS  Article  PubMed  Google Scholar 

  61. Cutler CW, Teng YT. Oral mucosal dendritic cells and periodontitis: many sides of the same coin with new twists. Periodontol 2000, 45:35–50, 2007

    Article  PubMed  Google Scholar 

  62. Leung BP, Conacher M, Hunter D, McInnes IB, Liew FY, Brewer JM. A novel dendritic cell-induced model of erosive inflammatory arthritis: distinct roles for dendritic cells in T cell activation and induction of local inflammation. J Immunol, 169: 7071–7077, 2002

    CAS  PubMed  Google Scholar 

  63. da Costa CE, Annels NE, Faaij CM, Forsyth RG, Hogendoorn PC, Egeler RM. Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med, 201: 687–693, 2005

    CAS  Article  PubMed  Google Scholar 

  64. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol, 6: 173–182, 2006

    CAS  Article  PubMed  Google Scholar 

  65. Lisignoli G, Toneguzzi S, Pozzi C, Piacentini A, Riccio M, Ferruzzi A, Gualtieri G, Facchini A. Proinflammatory cytokines and chemokine production and expression by human osteoblasts isolated from patients with rheumatoid arthritis and osteoarthritis. J Rheumatol, 26: 791–799, 1999

    CAS  PubMed  Google Scholar 

  66. Bouchard L, Naccache PH, Poubelle PE. Promotion of neutrophil adherence to human osteoblasts by microcrystals and f-Met-Leu-Phe. Biochem Biophys Res Commun, 296: 759–764, 2002

    CAS  Article  PubMed  Google Scholar 

  67. Chung R, Cool JC, Scherer MA, Foster BK, Xian CJ. Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J Leukoc Biol, 80: 1272–1280, 2006

    CAS  Article  PubMed  Google Scholar 

  68. Chakravarti A, Raquil MA, Tessier P, Poubelle PE. Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood, 114: 1633–1644, 2009

    CAS  Article  PubMed  Google Scholar 

  69. Nigrovic PA, Lee DM. Mast cells in inflammatory arthritis. Arthritis Res Ther, 7: 1–11, 2005

    CAS  Article  PubMed  Google Scholar 

  70. Chiappetta N, Gruber B. The role of mast cells in osteoporosis. Semin Arthritis Rheum, 36: 32–36, 2006

    CAS  Article  PubMed  Google Scholar 

  71. Silberstein R, Melnick M, Greenberg G, Minkin C. Bone remodeling in W/Wv mast cell deficient mice. Bone, 12: 227–236, 1991

    CAS  Article  PubMed  Google Scholar 

  72. Fitzpatrick LA, Buzas E, Gagne TJ, Nagy A, Horvath C, Ferencz V, Mester A, Kari B, Ruan M, Falus A, Barsony J. Targeted deletion of histidine decarboxylase gene in mice increases bone formation and protects against ovariectomy-induced bone loss. Proc Natl Acad Sci USA, 100: 6027–6032, 2003

    CAS  Article  PubMed  Google Scholar 

  73. Blair HC, Dong SS, Julian BA. Expression of stem cell factor by osteoblasts in normal and hyperparathyroid bone: relation to ectopic mast cell differentiation. Virchows Arch, 435: 50–57, 1999

    CAS  Article  PubMed  Google Scholar 

  74. Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science, 297: 1689–1692, 2002

    CAS  Article  PubMed  Google Scholar 

  75. Kacena MA, Ciovacco WA. Megakaryocyte-bone cell interactions. Adv Exp Med Biol, 658: 31–41, 2010

    Article  PubMed  Google Scholar 

  76. Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC. Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res, 19: 652–660, 2004

    CAS  Article  PubMed  Google Scholar 

  77. Kacena MA, Gundberg CM, Nelson T, Horowitz MC. Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone, 36: 215–223, 2005

    CAS  Article  PubMed  Google Scholar 

  78. Ciovacco WA, Goldberg CG, Taylor AF, Lemieux JM, Horowitz MC, Donahue HJ, Kacena MA. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone, 44: 80–86, 2009

    CAS  Article  PubMed  Google Scholar 

  79. Bord S, Frith E, Ireland DC, Scott MA, Craig JI, Compston JE. Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone, 36: 812–819, 2005

    CAS  Article  PubMed  Google Scholar 

  80. Beeton CA, Bord S, Ireland D, Compston JE. Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone, 39: 985–990, 2006

    CAS  Article  PubMed  Google Scholar 

  81. Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, Horowitz MC. Megakaryocyte-mediated inhibition of osteoclast development. Bone, 39: 991–999, 2006

    CAS  Article  PubMed  Google Scholar 

  82. Chagraoui H, Sabri S, Capron C, Villeval JL, Vainchenker W, Wendling F. Expression of osteoprotegerin mRNA and protein in murine megakaryocytes. Exp Hematol, 31: 1081–1088, 2003

    CAS  Article  PubMed  Google Scholar 

  83. Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, Watzek G. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets, 15: 29–35, 2004

    CAS  Article  PubMed  Google Scholar 

  84. Gruber R, Karreth F, Fischer MB, Watzek G. Platelet-released supernatants stimulate formation of osteoclast-like cells through a prostaglandin/RANKL-dependent mechanism. Bone, 30: 726–732, 2002

    CAS  Article  PubMed  Google Scholar 

  85. Endresen GK, Forre O. Human platelets in synovial fluid. A focus on the effects of growth factors on the inflammatory responses in rheumatoid arthritis. Clin Exp Rheumatol, 10: 181–187, 1992

    CAS  PubMed  Google Scholar 

  86. Steinberg AD, Alves ME, Lipowski J, Lebreton GC. Platelet association with gingival tissue inflammation. J Periodontol, 66: 860–863, 1995

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reinhard Gruber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gruber, R. Cell biology of osteoimmunology. Wien Med Wochenschr 160, 438–445 (2010). https://doi.org/10.1007/s10354-010-0809-y

Download citation

Schlüsselwörter

  • Osteoimmunologie
  • Osteoporose
  • Rheumatoide Arthritis
  • Parodontitis
  • Knochenumbau
  • Entzündungen
  • Osteoklast
  • Leukozyt

Keywords

  • Osteoimmunology
  • Osteoporosis
  • Rheumatoid arthritis
  • Periodontal disease
  • Bone remodeling
  • Coupling
  • Inflammation
  • Osteoclast
  • Leucocyte