Skip to main content
Log in

Mitochondrial function and dysfunction in sepsis

Mitochondriale Funktion und Dysfunktion bei der Sepsis

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die Mitochondrien sind die quantitative bedeutsamste ATP-Quelle von Zellen. Durch die pathophysiologischen Vorgänge, die im Verlauf der Abwehr von eindringenden Miroorganismen in Gang gesetzt werden, kommt es zu einer Beeinrächtigung von Funktion und Struktur der Mitochondrien. Insbesondere das hochreaktive Peroxynitrit, das aus der Reaktion von Stickstoffmonoxid und Superoxid-Anionen entsteht, schädigt die mitochondrialen Lipide, Proteine und Nukleinsäuren. Der starke oxidative Stress induziert DNA-Strangbrüche, die unter Aktivierung der Poly(ADP-Ribose)-Polymerase repariert werden. Dieser Prozess verbraucht große Mengen an Nicotinamid-Dinucleotid (NAD+), wodurch es zur zellulären NAD+-Verarmung kommt. Dies beeinträchtigt die Einschleusung von Elektronen in die Atmungskette und verstärkt die Inflammation. Neue therapeutische Strategien, die auf eine Abschwächung der Wirtsreaktion auf eindringende Mikroorganismen oder auf eine Modulation intrazellulärer Signalkaskaden, die zu oxidativem Stress führen, abzielen, konnten in experimentellen Studien die mitochondriale Funktion und letztlich auch die Organfunktion verbessern.

Summary

Mitochondria are the key source of cellular ATP and their structure and function are markedly affected by pathophysiologic processes associated with the host's response to invading pathogens. In particular, the highly reactive compound peroxynitrite, generated by the reaction of nitric oxide and superoxide anions, inhibits mitochondrial enzymes and damages lipids, proteins, and nucleic acids. Enhanced oxidative stress induces DNA strand breaks that are repaired by activation of poly(ADP-ribose)polymerase (PARP). This process consumes large amounts of nicotinamide adenine dinucleotide (NAD+) leading to cellular NAD+ depletion that impairs flux of reducing equivalents into the respiratory chain and also further promotes inflammation. In experimental studies, novel therapeutic strategies that aim to ameliorate the host's pathogen response or to modulate intracellular signaling events related to oxidative stress protected mitochondrial function and preserved cellular respiration ultimately leading to improved organ function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Clayton DA. Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol, 141: 217–232, 1992

    Article  CAS  PubMed  Google Scholar 

  • Crimi E, Sica V, Williams-Ignarro S, et al. The role of oxidative stress in adult critical care. Free Radic Biol Med, 40: 398–406, 2006

    Article  CAS  PubMed  Google Scholar 

  • Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med, 35(Suppl.): S591–S595, 2007

    Article  CAS  PubMed  Google Scholar 

  • Suliman HB, Carraway MS, Piantadosi CA. Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Crit Care Med, 167: 570–579, 2007

    Article  Google Scholar 

  • Suliman HB, Welty-Wolf KE, Carraway M, et al. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res, 64: 279–288, 2004

    Article  CAS  PubMed  Google Scholar 

  • Svistunenko DA, Davies N, Brealey D, et al. Mitochondrial dysfunction in patients with severe sepsis: An EPR interrogation of individual respiratory chain components. Biochim Biopyhs Acta, 1757: 262–272, 2006

    Article  CAS  Google Scholar 

  • Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. J Biol Chem, 272: 11369–11377, 1997

    Article  CAS  PubMed  Google Scholar 

  • Crouser ED, Julian MW, Dorinsky PM. Ileal VO2-DO2 alterations induced by endotoxin correlate with severity of mitochondrial injury. Am J Resp Crit Care Med, 160: 1347–1353, 1999

    CAS  PubMed  Google Scholar 

  • Crouser ED, Julian MW, Blaho DV, Pfeiffer DR. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med, 30: 276–284, 2002

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi T, Akashi K, Keira N, et al. Cytokine-induced nitric oxide inhibits mitochondrial energy production and induces myocardial dysfunction in endotoxin-treated rat hearts. J Mol Cell Cardiol, 37: 775–784, 2004

    Article  CAS  PubMed  Google Scholar 

  • Welty-Wolf KE, Simonson SG, Huang YC, et al. Ultrastructural changes in skeletal muscle mitochondria in Gram-negative sepsis. Shock, 5: 378–384, 1996

    Article  CAS  PubMed  Google Scholar 

  • Soriano FG, Nogueira AC, Caldini EG, et al. Potential role of poly(adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial dysfunction associated with septic shock. Crit Care Med, 34: 1073–1079, 2006

    Article  CAS  PubMed  Google Scholar 

  • Vanhorebeek I, De Vos R, Mesotten D, et al. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet, 365: 53–69, 2005

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten G, Knuefermann P, Schuhmacher G, et al. Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia. Shock, 25: 43–49, 2006

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Vallejo JG, Knuefermann P, et al. Escherichia coli LPS-induced LV dysfunction: role of Toll-like receptor-4 in the adult heart. Am J Physiol Heart Circ Physiol, 282: H2316–H2323, 2002

    CAS  PubMed  Google Scholar 

  • Levy RJ, Deutschmann CS. Cytochrome c oxidase dysfunction in sepsis. Crit Care Med, 35(Suppl.): S468–S475, 2007

    Article  CAS  PubMed  Google Scholar 

  • Larche J, Lancel S, Hassoun SM, Favory R, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol, 48: 377–385, 2006

    Article  CAS  PubMed  Google Scholar 

  • Kurose I, Miura S, Higuchi H, et al. Increased nitric oxide synthase activity as a cause of mitochondrial dysfunction in rat hepatocytes: roles of tumor necrosis factor alpha. Hepatology, 24: 1185–1192, 1996

    CAS  PubMed  Google Scholar 

  • Tu W, Satoi S, Zhang Z, et al. Hepatocellular dysfunction induced by nitric oxide production in hepatocytes isolated from rats with sepsis. Shock, 19: 373–377, 2003

    Article  CAS  PubMed  Google Scholar 

  • Satoi S, Kamiyama Y, Kitade H, et al. Nitric oxide production and hepatic dysfunction in patients with postoperative sepsis. Clin Exp Pharmacol Physiol, 27: 197–201, 2000

    Article  CAS  PubMed  Google Scholar 

  • Berg S, Sappington PL, Guzik LJ, et al. Proinflammatory cytokines increase the rate of glycolysis and adenosine-5′-triphosphate turnover in cultured rat enterocytes. Crit Care Med, 31: 1203–1212, 2003

    Article  CAS  PubMed  Google Scholar 

  • Khan AU, Delude RL, Han YH, et al. Liposomal NAD+ consumption prevents diminished O2 consumption by immunostimulated Caco-2 cells. Am J Physiol Lung Cell Mol Physiol, 282: L1082–L1091, 2002

    CAS  PubMed  Google Scholar 

  • Cho S, Szeto HH, Kim E, et al. A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem, 282: 4634–4642, 2007

    Article  CAS  PubMed  Google Scholar 

  • Fink MP, Macias CA, Xiao J, et al. Hemigramicidin-TEMPO conjugates: Novel mitochondria-targeted antioxidants. Crit Care Med, 35(Suppl.): S461–S467, 2007

    Article  CAS  PubMed  Google Scholar 

  • King CJ, Tytgat S, Delude RL, Fink MP. Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med, 27: 2518–2524, 1999

    Article  CAS  PubMed  Google Scholar 

  • Matejovic M, Krouzecky A, Martinkova V, et al. Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock, 21: 458–465, 2004

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Lorente JA, Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med, 32: 21–30, 2004

    Article  CAS  PubMed  Google Scholar 

  • Gerö D, Szabo C. Poly(ADP-ribose) polymerase: a new therapeutic target? Curr Opin Anaesthesiol, 21: 111–121, 2008

    Article  PubMed  Google Scholar 

  • Wang H, Zhu S, Zhou R, et al. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med, 10: e32, 2008

    Article  PubMed  Google Scholar 

  • Cairns CB, Ferroggiaro AA, Walther JM, et al. Post-ischemic administration of succinate reverses the impairment of oxidative phosphorylation after cardiac ischemia and reperfusion injury. Circulation, 96(9 Suppl.): II260–II265, 1997

    Google Scholar 

  • Ferreira FL, Ladriere L, Vincent JL, Malaisse WJ. Prolongation of survival time by infusion of succinic acid dimethyl ester in a caecal liagtion and perforation model of sepsis. Horm Metab Res, 32: 335–336, 2000

    Article  CAS  PubMed  Google Scholar 

  • Malaisse WJ, Nadi AB, Ladriere L, Zhang TM. Protective effects of succinic acid dimethyl ester infusion in experimental endotoxemia. Nutrition, 13: 330–341, 1997

    CAS  PubMed  Google Scholar 

  • Schaefer CF, Lerner MR, Biber B. Dose-related reduction of intestinal cytochrome aa3 induced by endotoxin in rats. Circ Shock, 33: 17–25, 1991

    CAS  PubMed  Google Scholar 

  • Kobayashi A, Okayama Y, Yamazaki N. 31P-NMR magnetization transfer study of reperfused rat heart. Mol Cell Biochem, 119: 121–127, 1993

    Article  CAS  PubMed  Google Scholar 

  • Rivers E, Nguyen B, Havstad S, et al. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med, 345: 1368–1377, 2001

    Article  CAS  PubMed  Google Scholar 

  • Rivers EP, Kruse JA, Jacobsen G, et al. The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med, 35: 2016–2024, 2007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Wendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendel, M., Heller, A. Mitochondrial function and dysfunction in sepsis. Wien Med Wochenschr 160, 118–123 (2010). https://doi.org/10.1007/s10354-010-0766-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-010-0766-5

Schlüsselwörter

Keywords

Navigation