Skip to main content
Log in

Update on the role of Toll-like receptors during bacterial infections and sepsis

Aktuelles zu Toll-like Rezeptoren bei bakteriellen Infektionen und Sepsis

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Toll-like Rezeptoren (TLRs) sind Erkennungs-Rezeptoren, welche ganz wesentlich zur Abwehrreaktion bei bakteriellen und viralen Infektionen beitragen. Sobald TLRs die Anwesenheit eingedrungener Keime registrieren, kommt es zur Auslösung einer Signaltransduktionskaskade, welche schließlich zur Produktion und Freisetzung von Entzündungsmediatoren und Anlockung von Granulozyten führt. Während das initiale Ziel dieser Entzündungsreaktion die effektive Erkennung und Entfernung eindringender Keime darstellt, führt eine verlängerte oder unkontrollierte Entzündungsantwort zu den Symptomen der systemischen Entzündung und Sepsis. Dieser Kurzreview fasst die wesentlichsten Aspekte der bei bakteriellen Infektionen wichtigen TLRs zusammen und diskutiert daraus resultierende therapeutische Ansätze.

Summary

Toll-like receptors (TLRs) are recognition molecules that importantly contribute to the innate immune response to bacterial and viral infections. Once TLRs sense the presence of invading pathogens a signal transduction cascade is initiated that eventually leads to the production of pro-inflammatory mediators and attraction of neutrophils to the site of infection. While the ultimate goal of this defense pathway is the successful elimination of invading microbes, prolonged or exaggerated stimulation of TLR-associated events can lead to systemic inflammation and clinical symptoms of sepsis. This brief review summarizes the impact of selected TLRs in the host response to clinically important bacteria and provides insights into TLR-associated therapeutic approaches during sepsis and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Medzhitov R, Janeway C, Jr. Innate immunity. N Engl J Med, 343: 338–344

  • Takeda K, Kaisho T, Akira S. Toll-Like Receptors. Annu Rev Immunol, 9: 9, 2003

    Google Scholar 

  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 1: 135–145, 2001

    Article  CAS  PubMed  Google Scholar 

  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol, 9: 535–542, 2009

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science, 282: 2085–2088, 1998

    Article  CAS  PubMed  Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (TLR4). J Exp Med, 189: 615–625, 1999

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 162: 3749–3752, 1999

    CAS  PubMed  Google Scholar 

  • van Westerloo DJ, Weijer S, Bruno MJ, et al. Toll-like receptor 4 deficiency and acute pancreatitis act similarly in reducing host defense during murine Escherichia coli peritonitis. Crit Care Med, 33: 1036–1043, 2005

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Wieland CW, Florquin S, et al. Differential roles of CD14 and Toll-like receptors 4 and 2 in murine acinetobacter pneumonia. Am J Resp Crit Care Med, 173: 122–129, 2006

    Article  CAS  PubMed  Google Scholar 

  • Branger J, Knapp S, Weijer S, et al. Role of Toll-like receptor 4 in Gram-positive and Gram-negative pneumonia in mice. Infect Immun, 72: 788–794, 2004

    Article  CAS  PubMed  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 189: 1777–1782, 1999

    Article  CAS  PubMed  Google Scholar 

  • Visintin A, Mazzoni A, Spitzer JA, et al. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci USA, 98: 12156–12161, 2001

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol, 3: 667–672, 2002

    CAS  PubMed  Google Scholar 

  • Pugin J, Stern-Voeffray S, Daubeuf B, et al. Soluble MD-2 activity in plasma from patients with severe sepsis and septic shock. Blood, 104: 4071–4079, 2004

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity, 11: 443–451, 1999

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, von Aulock S, Leendertse M, et al. Lipoteichoic acid-induced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J Immunol, 180: 3478–3484, 2008

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol, 165: 5392–5396, 2000

    CAS  PubMed  Google Scholar 

  • Knapp S, Wieland CW, van 't Veer C, et al. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol, 172: 3132–3138, 2004

    CAS  PubMed  Google Scholar 

  • Malley R, Henneke P, Morse SC, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA, 100: 1966–1971, 2003

    Article  CAS  PubMed  Google Scholar 

  • Dessing MC, Florquin S, Paton JC, et al. Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci. Cell Microbiol, 10: 237–246, 2008

    CAS  PubMed  Google Scholar 

  • Skerrett SJ, Wilson CB, Liggitt HD, et al. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol, 292: L312–L322, 2007

    Article  CAS  PubMed  Google Scholar 

  • Blohmke CJ, Victor RE, Hirschfeld AF, et al. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol, 180: 7764–7773, 2008

    CAS  PubMed  Google Scholar 

  • Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol, 19: 3–10, 2007

    Article  CAS  PubMed  Google Scholar 

  • Vogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med, 13: 1042–1049, 2007

    Article  CAS  PubMed  Google Scholar 

  • van Zoelen MA, Vogl T, Foell D, et al. Expression and role of myeloid-related protein-14 in clinical and experimental sepsis. American journal of respiratory and critical care medicine, 180: 1098–1106, 2009

    Article  CAS  PubMed  Google Scholar 

  • Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med, 36: 296–327, 2008

    Article  PubMed  Google Scholar 

  • Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med, 344: 699–709, 2001

    Article  CAS  PubMed  Google Scholar 

  • Levi M, van der Poll T. Recombinant human activated protein C: current insights into its mechanism of action. Crit Care (London, England), Suppl 5: S3, 2007

  • Gentry CA, Gross KB, Sud B, et al. Adverse outcomes associated with the use of drotrecogin alfa (activated) in patients with severe sepsis and baseline bleeding precautions. Crit Care Med, 37: 19–25, 2009

    Article  CAS  PubMed  Google Scholar 

  • Ferrer R, Artigas A, Suarez D, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Resp Crit Care Med, 180: 861–866, 2009

    Article  CAS  PubMed  Google Scholar 

  • O Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev, 61: 177–197, 2009

    Article  Google Scholar 

  • Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med, 11: 1173–1179, 2005

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem, 279: 7370–7377, 2004

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L, Babelova A, Kiss E, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest, 115: 2223–2233, 2005

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med, 15: 1377–1382, 2009

    Article  CAS  PubMed  Google Scholar 

  • Fabia B, Olivier S, Renate EG, et al. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Riheum, 52: 2656–2665, 2005

    Article  Google Scholar 

  • Okamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem, 276: 10229–10233, 2001

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell, 133: 235–249, 2008

    Article  CAS  PubMed  Google Scholar 

  • Vollmer J, Tluk S, Schmitz C, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med, 202: 1575–1585, 2005

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Avalos AM, Mao S-Y, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol, 8: 487–496, 2007

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 416: 603–607, 2002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Knapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, S. Update on the role of Toll-like receptors during bacterial infections and sepsis. Wien Med Wochenschr 160, 107–111 (2010). https://doi.org/10.1007/s10354-010-0765-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-010-0765-6

Schlüsselwörter

Keywords

Navigation