Skip to main content
Log in

The vagal immune reflex: a blessing from above

Der vagale Immunreflex

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die angeborene Immunantwort wird bei Erkennen von Infektion oder Verletzung aktiviert. Eine kompakte Regulation dieser inflammatorischen Antwort ist vital, um die Kontrolle nicht zu verlieren und eine Gefahr für den Wirt darzustellen. Kürzlich wurde eine neurale Leitung identifiziert, die die inflammatorische Antwort in einer reflexhaften Art und Weise kontrolliert. Diese Leitung involviert den Vagusnerv, der imstande ist, eine Entzündung wahrzunehmen und durch Abgabe von Aetylcholin zu antworten, wodurch mittels Interaktion mit Immunzellen die Immunantwort gemildert wird. Das derzeitige Wissen bezüglich des "vagalen Immunreflexes" wird mit Betonung der Rolle in der Sepsis diskutiert.

Summary

The innate immune response is activated upon recognition of infection or injury. A tight regulation of this inflammatory response is vital to ensure that it does not spin out of control and becomes harmful to the host. Recently, a neural circuit has been identified that controls the inflammatory response in a reflex-like manner. This circuit involves the vagus nerve which is able to sense inflammation and to respond to it by releasing acetylcholine which, through an interaction with immune cells, dampens the inflammatory response. The current knowledge regarding this "vagal immune reflex" is discussed with an emphasis on its role in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Roth J, Harre EM, Rummel C, et al. Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci, 9: 290–300, 2004

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Maier SF. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med, 257: 139–155, 2005

    Article  CAS  PubMed  Google Scholar 

  • Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol, 5: 575–581, 2004

    Article  CAS  PubMed  Google Scholar 

  • Fleshner M, Goehler LE, Schwartz BA, et al. Thermogenic and corticosterone responses to intravenous cytokines (IL-1beta and TNF-alpha) are attenuated by subdiaphragmatic vagotomy. J Neuroimmunol, 86: 134–141, 1998

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Goehler LE, Fleshner M, et al. The role of the vagus nerve in cytokine-to-brain communication. Ann NY Acad Sci, 840: 289–300, 1998

    Article  CAS  PubMed  Google Scholar 

  • Goehler LE, Relton JK, Dripps D, et al. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull, 43: 357–364, 1997

    Article  CAS  PubMed  Google Scholar 

  • Felten DL, Felten SY. Sympathetic noradrenergic innervation of immune organs. Brain Behav Immun, 2: 293–300, 1988

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 405(6785): 458–462, 2000

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 421(6921): 384–388, 2003

    Article  CAS  PubMed  Google Scholar 

  • van der Poll T. Effects of catecholamines on the Inflammatory response. Sepsis, 4: 159–167, 2000

    Article  Google Scholar 

  • Leceta J, Gomariz RP, Martinez C, et al. Receptors and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP. Ann NY Acad Sci, 921: 92–102, 2000

    Article  CAS  PubMed  Google Scholar 

  • Steinman L, Conlon P, Maki R, et al. The intricate interplay among body weight, stress, and the immune response to friend or foe. J Clin Invest, 111: 183–185, 2003

    CAS  PubMed  Google Scholar 

  • van Westerloo DJ, Giebelen IA, Florquin S, et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology, 130: 1822–1830, 2006

    Article  CAS  PubMed  Google Scholar 

  • van Westerloo DJ, Giebelen IA, Florquin S, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis, 191: 2138–2148, 2005

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Nardi D, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci, 85: 141–147, 2000

    Article  CAS  PubMed  Google Scholar 

  • Giebelen IA, van Westerloo DJ, LaRosa GJ, et al. Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung. Shock, 28: 700–703, 2007

    CAS  PubMed  Google Scholar 

  • Giebelen IA, van Westerloo DJ, LaRosa GJ, et al. Stimulation of alpha7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor alpha-independent mechanism. Shock, 27: 443–447, 2007

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H, Kurokawa M, Ozaki N, et al. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol, 146: 116–123, 2006

    Article  CAS  PubMed  Google Scholar 

  • de Jonge WJ, van der Zanden EP, The FO, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol, 6: 844–851, 2005

    Article  CAS  PubMed  Google Scholar 

  • Huston JM, Ochani M, Rosas-Ballina M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med, 203: 1623–1628, 2006

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Ballina M, Ochani M, Parrish WR, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA, 105: 11008–11013, 2008

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ. Reflex control of immunity. Nat Rev Immunol, 9: 418–428, 2009

    Article  CAS  PubMed  Google Scholar 

  • Pontet J, Contreras P, Curbelo A, et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care, 18: 156–163, 2003

    Article  PubMed  Google Scholar 

  • George MS, Rush AJ, Sackeim HA, et al. Vagus nerve stimulation (VNS): utility in neuropsychiatric disorders. Int J Neuropsychopharmacol, 6: 73–83, 2003

    Article  PubMed  Google Scholar 

  • George MS, Nahas Z, Bohning DE, et al. Vagus nerve stimulation therapy: a research update. Neurology, 59(6 Suppl 4): S56–S61, 2002

    PubMed  Google Scholar 

  • Marangell LB, Rush AJ, George MS, et al. Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol Psychiat, 51: 280–287, 2002

    Article  PubMed  Google Scholar 

  • Sackeim HA, Rush AJ, George MS, et al. Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology, 25: 713–728, 2001

    Article  CAS  PubMed  Google Scholar 

  • Ben Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol, 1: 477–482, 2002

    Article  PubMed  Google Scholar 

  • Huston JM, Gallowitsch-Puerta M, Ochani M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med, 35: 2762–2768, 2007

    Article  PubMed  Google Scholar 

  • Ulloa L, Tracey KJ. The "cytokine profile": a code for sepsis. Trends Mol Med, 11: 56–63, 2005

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wei DQ, Zhang R, et al. Screening for new agonists against Alzheimer's disease. Med Chem, 3: 488–493, 2007

    Article  CAS  PubMed  Google Scholar 

  • Arai I, Hirose H, Muramatsu M, et al. Possible involvement of non-steroidal anti-inflammatory drugs in vagal-mediated gastric acid secretion in rats. Jpn J Pharmacol, 37: 91–99, 1985

    Article  CAS  PubMed  Google Scholar 

  • Pavlov VA, Parrish WR, Rosas-Ballina M, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun, 23: 41–45, 2009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. van Westerloo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Westerloo, D. The vagal immune reflex: a blessing from above. Wien Med Wochenschr 160, 112–117 (2010). https://doi.org/10.1007/s10354-010-0761-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-010-0761-x

Schlüsselwörter

Keywords

Navigation