Skip to main content

Advertisement

Log in

Blood coagulation disorders in septic patients

Sepsis – assoziierte Blutgerinnungsstörungen

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Abwehrsystem und Blutgerinnung sind eng verknüpfte und interagierende Systeme, die für die Integrität eines Organismus von entscheidender Bedeutung sind. Komplexe Mechanismen regulieren die Intensität einer Antwort auf eindringende Pathogene oder andere potentiell gefährliche Situationen. Normalerweise ist so eine Reaktion zeitlich limitiert und auf den Ort der Verletzung beschränkt. Manchmal jedoch erfolgt die systemische Antwort überschießend und unangepasst und führt zur Schädigung des Organismus anstatt zur Heilung. Abhängig vom genetischen Repertoire des Organismus, von seiner derzeitigen Immunkompetenz und der Art des Auslösers verursacht die systemische Antwort das klinische Bild einer Sepsis (in ihren verschiedenen Stadien). Die septische Organfunktionsstörung wird dabei von einer generalisierten Fibrinablagerung in der Mikrozirkulation verursacht, die aus überschießender Gerinnungsaktivierung, insuffizienten Antikoagulantien und gehemmter Fibrinolyse entsteht. Dieser Artikel beschreibt die zugrundeliegenden pathophysiologischen Mechanismen und stellt www.SepDIC.eu vor, eine Internetplattform zur Sepsis und der damit assoziierten Koagulopathie.

Summary

Host defense and blood coagulation are tightly connected and interacting systems, necessary for the integrity of an organism. Complex mechanisms regulate the intensity of a host response to invading pathogens or other potentially dangerous situations. Under regular conditions, this response is limited in time and located to the site of injury. Sometimes, however, systemic host response is overwhelming and disproportional and causes damage, not cure. Dependent on the genetical predisposition of the host, its current immunocompetence, or the type of injury, the reaction leads to the clinical picture of the different degrees of sepsis. Septic organ dysfunction is caused by intravascular fibrin deposition as a result of coagulation activation, anticoagulant breakdown, and shut down of fibrinolysis. This article describes the major pathophysiologic reactions in these situations and presents www.SepDIC.eu, an online tool on sepsis and associated coagulopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med, 348: 138–150, 2003

    Article  CAS  PubMed  Google Scholar 

  • Schouten M, Wiersinga WJ, Levi M, et al. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol, 83: 536–545, 2008

    Article  CAS  PubMed  Google Scholar 

  • Levy MM, Fink MP, Marshall JC, et al. SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med, 31: 1250–1256, 2003

    Article  PubMed  Google Scholar 

  • Levi M, deJonge E, van der Poll T. Sepsis and disseminated intravascular coagulation. J Thromb Thrombolysis, 16: 43–47, 2003

    Article  CAS  PubMed  Google Scholar 

  • Knoebl P. Blood coagulation and inflammation in critical illness: the importance of the protein C pathway. Uni-Med Publishers, Bremen, Germany. ISBN 978-3-8374-1025-9; 2008

  • Aird WC. Endothelium as an organ system. Crit Care Med, 32(5 Suppl): S271–S279, 2004

    Article  PubMed  Google Scholar 

  • Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA, 270: 975–979, 1993

    Article  CAS  PubMed  Google Scholar 

  • Okajima K. Regulation of inflammatory responses by natural anticoagulants. Immunol Rev, 184: 258–274, 2001

    Article  CAS  PubMed  Google Scholar 

  • Fourrier F, Chopin C, Goudemand J, et al. Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest, 101: 816–823, 1992

    Article  CAS  PubMed  Google Scholar 

  • Kountchev J, Bijuklic K, Bellmann R, et al. Reduction of D-dimer levels after therapeutic administration of antithrombin in acquired antithrombin deficiency of severe sepsis. Crit Care, 9: R596–R600, 2005

    Article  PubMed  Google Scholar 

  • Wiedermann CJ, Kaneider NC. A systematic review of antithrombin concentrate use in patients with disseminated intravascular coagulation of severe sepsis. Blood Coagul Fibrinolysis, 17: 521–526, 2006

    Article  CAS  PubMed  Google Scholar 

  • Warren BL, Eid A, Singer P, et al. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA, 286: 1869–1878, 2001

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JN, Wiedermann CJ, Juers M, et al. Benefit/risk profile of high-dose antithrombin in patients with severe sepsis treated with and without concomitant heparin. Thromb Haemost, 95: 850–856, 2006

    CAS  PubMed  Google Scholar 

  • Kienast J, Juers M, Wiedermann CJ, et al. Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J Thromb Haemost, 4: 90–97, 2006

    Article  CAS  PubMed  Google Scholar 

  • Wiedermann CJ, Hoffmann JN, Juers M, et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit Care Med, 34: 285–292, 2006

    Article  CAS  PubMed  Google Scholar 

  • Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood, 109: 3161–3172, 2007

    Article  CAS  PubMed  Google Scholar 

  • Joyce DE, Nelson DR, Grinnell BW. Leukocyte and endothelial cell interactions in sepsis: relevance of the protein C pathway. Crit Care Med, 32: S280–S286, 2004

    Article  PubMed  Google Scholar 

  • Yan SB, Helterbrand JD, Hartman DL, et al. Low levels of protein C are associated with poor outcome in severe sepsis. Chest, 120: 915–922, 2001

    Article  CAS  PubMed  Google Scholar 

  • Macias WL, Nelson DR. Severe protein C deficiency predicts early death in severe sepsis. Crit Care Med, 32: S223–S228, 2004

    Article  CAS  PubMed  Google Scholar 

  • Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med, 344: 699–709, 2001

    Article  CAS  PubMed  Google Scholar 

  • Marti-Carvajal AJ, Salanti G, Cardona-Zorrilla AF. Human recombinant activated protein C for severe sepsis (Review). The Cochrane Library, Issue 2, 2009

  • Dhainaut JF, Yan SB, Joyce DE, et al. Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost, 2: 1924–1933, 2004

    Article  CAS  PubMed  Google Scholar 

  • Joyce DE, Grinnell BW. Recombinant human activated protein C attenuates the inflammatory response in endothelium and monocytes by modulating nuclear factor-kappaB. Crit Care Med, 30: S288–S293, 2002

    Article  CAS  PubMed  Google Scholar 

  • Weiler H, Ruf W. Activated protein C in sepsis: the promise of nonanticoagulant activated protein C. Curr Opin Hematol, 15: 487–493, 2008

    Article  CAS  PubMed  Google Scholar 

  • White B, Livingstone W, Murphy C, et al. An open-label study of the role of adjuvant hemostatic support with protein C replacement therapy in purpura fulminans-associated meningococcemia. Blood, 96: 3719–3724, 2000

    CAS  PubMed  Google Scholar 

  • De Kleijn ED, de Groot R, Hack CE, et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med, 31: 1839–1847, 2003

    Article  PubMed  Google Scholar 

  • Schellongowski P, Bauer E, Holzinger U, et al. Treatment of adult patients with sepsis-induced coagulopathy and purpura fulminans using a plasma-derived protein C concentrate (Ceprotin). Vox Sang, 90: 294–301, 2006

    Article  CAS  PubMed  Google Scholar 

  • Veldman A, Fischer D, Schranz D, et al. Human Protein C concentrate in the treatment of Purpura Fulminans: Safety and Outcome in 94 patients. J Thromb Haemost, 7(2): 544, 2009

    Google Scholar 

  • Broze GJ. Tissue factor pathway inhibitor and the revised theory of coagulation. Annu Rev Med, 46: 103–112, 1995

    Article  CAS  PubMed  Google Scholar 

  • Abraham E, Reinhart K, Opal S, et al. (OPTIMIST Trial Study Group). Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA, 290: 238–247, 2003

    Article  CAS  PubMed  Google Scholar 

  • Riewald M, Petrovan RJ, Donner A, et al. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science, 296: 1880–1882, 2002

    Article  CAS  PubMed  Google Scholar 

  • Brouwer MC, de Gans J, Heckenberg SG, et al. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis, 9: 31–44, 2009

    Article  CAS  PubMed  Google Scholar 

  • Dellinger MD, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med, 36: 296–327, 2008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Knoebl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoebl, P. Blood coagulation disorders in septic patients. Wien Med Wochenschr 160, 129–138 (2010). https://doi.org/10.1007/s10354-009-0738-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-009-0738-9

Schlüsselwörter

Keywords

Navigation