Wiener Medizinische Wochenschrift

, Volume 158, Issue 19–20, pp 579–582 | Cite as

Biliary secretion of fluid phase markers is modified under post-cholestatic conditions

  • Isabella Ellinger
  • Renate FuchsEmail author


Hepatocytes take up macromolecules from the circulation by receptor-mediated and/or fluid-phase endocytosis. These molecules are either selectively or nonspecifically transported through the cell (transcytosis) and are subsequently secreted into bile. As transcytosis of diverse fluid-phase markers (FPM) is still poorly characterized, biliary secretion of two FPMs (horseradish peroxidase (HRP), FITC-Dextran) was studied in the isolated perfused rat liver following short-term (1 min) single-pulse administration. HRP was secreted into bile with a fast (5 min) and slow (15 min) transit time, while FITC-dextran appeared in bile in a single peak at 7 min. Short-time reversible cholestasis, induced by bile duct ligation (BDL), had been shown to affect HRP secretion. Here, we compare the influence of 2 h BDL on post-cholestatic biliary secretion of HRP and FITC-dextran. BDL drastically stimulated the fast component of HRP secretion into bile, but had an effect neither on the second HRP peak nor on the appearance of FITC-dextran in bile. Perfusion at low temperature (16°C) under control and post-cholestatic conditions suppressed both, the second HRP peak and the appearance of FITC-dextran in bile, but uptake of FPM by endocytosis was not inhibited as the markers were secreted upon re-warming to 37°C. In addition, perfusion at low temperature under control and post-cholestatic conditions delayed the appearance of the fast HRP peak in bile and it abrogated the stimulating effect of BDL on the first HRP peak. These data indicate that BDL boosts HRP secretion along a temperature-sensitive transcellular pathway and/or a paracellular route. This fast route is taken only by HRP but not by FITC-dextran, the latter being exclusively transported by a transcellular route under all conditions investigated.


Liver Cholestasis Bile duct ligation Transcytosis Fluid-phase marker 



bile duct ligation


Krebs-Henseleith bicarbonate buffer


horseradish peroxidase


isolated perfused liver

Einfluss einer Cholestase auf die Ausscheidung von Fluid-Phase Markern in die Galle


Hepatozyten nehmen Makromoleküle aus dem Blut über Rezeptor-vermittelte oder Fluid-phase-Endozytose auf. Diese Makromoleküle können entweder spezifisch oder unspezifisch durch die Zelle transportiert werden (=Transzytose) und dann in die Galle ausgeschieden werden. Da die Transzytosewege verschiedener Fluid-phase Marker (FPM) kaum charakterisiert sind, wurde die biliäre Sekretion von zwei FPM (Meerrettichperoxidase (HRP), FITC-Dextran) in der isoliert perfundierten Rattenleber untersucht. Nach kurzzeitig Angebot (1 min) wurde HRP biphasisch in die Galle ausgeschieden: miteinem schnellen/frühen (5 min) und einem langsamen/verzögerten (15 min) Sekretionsmaximum. Andere Arbeitsgruppen hatten gezeigt, dass eine durch Gallengangsligatur hervorgerufene Kurzzeitcholestase (BDL) die HRP Sekretion beeinflußt. Daher wurde in dieser Arbeit die Auswirkung einer BDL sowohl auf die Ausscheidung von HRP als auch auf FITC-Dextran untersucht. Obwohl BDL das erste HRP Sekretionsmaximum erhöhte, hatte sie keine Auswirkungen auf das zweite HRP Ausscheidungsmaximum oder auf die Ausscheidung von FITC-Dextran. Perfusion bei niedriger Temperatur (16°C) unter Kontrollbedingungen oder nach BDL blockierte die FITC-Dextran Sekretion und den langsamen HRP Weg, während die schnelle HRP Sekretion in die Galle verzögert wurde und BDL darauf keinen stimulierenden Einfluß mehr hatte. Während der 16°C Perfusion erfolgte eine Aufnahme von HRP und FITC-Dextran in die Hepatozyten, da nach Erwärmen auf 37°C die Marker in die Galle ausgeschieden wurden. Daraus lässt sich schließen, dass BDL die rasche Sekretion von HRP über einen Temperatur-sensitiven transzellulären und/oder parazellulären Weg induziert. Über diesen Weg wird FITC-Dextran nicht transportiert, vielmehr erfolgt die Sekretion von FITC-Dextran in die Galle ausschliesslich über einen transzellulären Weg.


Leber Cholestase Gallengangsligatur Transzytose Fluid-Phase Marker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvaro D, Benedetti A, Gigliozzi A, Bini A, Furfaro S, Bassotti C, La Rosa T, Jezeque AM, Capocaccia IL. Effect of Brefeldin A on transcytotic vesicular pathway and bile secretion: a study on the isolated perfused rat liver and isolated rat hepatocyte couplets. Hepatology, 21: 450–459, 1995PubMedCrossRefGoogle Scholar
  2. Boyer JL. Tight junctions in normal and cholestatic liver: does the paracellular pathway have functional significance? Hepatology, 3: 614–617, 1983PubMedCrossRefGoogle Scholar
  3. Elferink RO. Cholestasis. Gut 52(Suppl 2): ii42–ii48, 2003PubMedGoogle Scholar
  4. Ellinger I, Klapper H, Fuchs R. Fluid-phase marker transport in rat liver: Free-flow electrophoresis separates distinct endosome subpopulations. Electrophoresis, 19:1154–1161, 1998PubMedCrossRefGoogle Scholar
  5. Folli F, Alvaro D, Gigliozzi A, Bassotti C, Kahn CR, Pontiroli AE, Capocaccia L, Jezequel AM, Benedetti A. Regulation of endocytic-transcytotic pathways and bile secretion by phosphatidylinositol 3-kinase in rats. Gastroenterology, 113: 954–965, 1997PubMedCrossRefGoogle Scholar
  6. Fuchs R, Male P, Mellman I. Acidification and ion permeabilities of highly purified rat liver endosomes. J Biol Chem, 264: 2212–2220, 1989PubMedGoogle Scholar
  7. Graf J. Canalicular bile salt-independent bile formation: concepts and clues from electrolyte transport in rat liver. Am J Physiol, 244: G233–G246, 1983PubMedGoogle Scholar
  8. Hayakawa T, Ng O-C, Ma A, Boyer JL. taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology, 99: 216–228, 1990PubMedGoogle Scholar
  9. Hoppe CA, Connolly TP, Hubbard AL. Transcellular transport of polymeric IgA in the rat hepatocyte: biochemical and morphological characterization of the transport pathway. J Cell Biol, 101: 2113–2123, 1985PubMedCrossRefGoogle Scholar
  10. Jones JA, Kaphalia L, Treinen-Moslen M, Liebler DC. Proteomic characterization of metabolites, protein adducts, and biliary proteins in rats exposed to 1,1-dichloroethylene or diclofenac. Chem Res Toxicol, 16: 1306–1317, 2003PubMedCrossRefGoogle Scholar
  11. Kempka G, Kolb-Bachofen V. Binding, uptake, and transcytosis of ligands for mannose-specific receptors in rat liver: an electron microscopic study. Exp Cell Res, 176: 38–48, 1988PubMedCrossRefGoogle Scholar
  12. Klapper H, Graf J, Fuchs R. Temperature dependence of transcytotic pathways in rat liver. In: Courtoy PJ (ed) Endocytosis: from cell biology to health, disease and therapy. NATO ASI series ed, vol. H62. Springer, Berlin-Heidelberg, pp 301–307, 1992Google Scholar
  13. Kloppel T, Hoops T, Gaskin D, Le M. Uncoupling of the secretory pathways for IgA and secretory component by cholestasis. Am J Physiol, 253: G232–G240, 1987PubMedGoogle Scholar
  14. Kloppel TM, Brown WR, Reichen J. Mechanisms of secretion of proteins into bile: studies in the perfused rat liver. Hepatology, 6: 587–594, 1986PubMedCrossRefGoogle Scholar
  15. Lake JR, Licko V, Van Dyke RW, Scharschmidt BF. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. J Clin Invest, 76: 676–684, 1985PubMedCrossRefGoogle Scholar
  16. Lora L, Mazzon E, Billington D, Milanesi C, Naccarato R, Martines D. Effects of cyclosporin A on paracellular and transcellular transport of horseradish peroxidase in perfused rat livers. Dig Dis Sci, 42: 514–521, 1997PubMedCrossRefGoogle Scholar
  17. Lowe PJ, Kan KS, Barnwell SG, Sharma RK, Coleman R. Transcytosis and paracellular movements of horseradish peroxidase across liver parenchymal tissue from blood to bile. Biochem J, 229: 529–537, 1985PubMedGoogle Scholar
  18. Marsh M, Schmid S, Kern H, Harms E, Mellman I, Helenius A. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J Cell Biol, 104: 875–886, 1987PubMedCrossRefGoogle Scholar
  19. Rahner C, Stieger B, Landmann L. Structure-function correlation of tight junctional impairment after intrahepatic and extrahepatic cholestasis in rat liver. Gastroenterology, 110: 1564–1578, 1996PubMedCrossRefGoogle Scholar
  20. Reuben A. Biliary proteins. Hepatology, 4: 46S–50S, 1984PubMedCrossRefGoogle Scholar
  21. Stang E, Kindberg GM, Berg T, Roos N. Endocytosis mediated by the mannose receptor in liver endothelial cells. An immunocytochemical study. Eur J Cell Biol, 52: 67–76, 1990PubMedGoogle Scholar
  22. Stefaner I, Klapper H, Sztul E, Fuchs R. Free-flow electrophoretic analysis of endosome subpopulations of rat hepatocytes. Electrophoresis, 18: 2516–2522, 1997PubMedCrossRefGoogle Scholar
  23. Stieger B, Meier PJ, Landmann L. Effect of obstructive cholestasis on membrane traffic and domain-specific expression of plasma membrane proteins in rat liver parenchymal cells. Hepatology, 20: 201–212, 1994PubMedGoogle Scholar
  24. Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev, 83: 871–932, 2003PubMedGoogle Scholar
  25. van IJzendoorn SC, Maier O, Van Der Wouden JM, Hoekstra D. The subapical compartment and its role in intracellular trafficking and cell polarity. J Cell Physiol, 184: 151–160, 2000PubMedCrossRefGoogle Scholar
  26. Yamaguchi Y, Dalle-Molle E, Hardison WGM. Hepatocyte horseradish peroxidase uptake is saturable and inhibited by mannose-terminal glycoproteins. Am J Physiol, 264: G880–G885, 1993PubMedGoogle Scholar
  27. Zollner G, Trauner M. Molecular mechanisms of cholestasis. Wien Med Wochenschr, 156: 380–385, 2006PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PathophysiologyMedical University of ViennaViennaAustria

Personalised recommendations