Skip to main content

Advertisement

Log in

Pancreatic stellate/myofibroblast cells express G-protein-coupled melatonin receptor 1

Aktivierte Stellatzellen/Myofibroblasten exprimieren den G-Protein-gekoppelten Melatoninrezeptor 1

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Bei der chronischen Pankreatitis und dem Pankreasadenokarzinom kommt es zu einer progressiven Fibrose, die mit einer enormen Akkumulation von extrazellulären Matrixkomponenten einhergeht. Die Hauptproduzenten dieser Matrixproteine sind Retinoid-speichernde mesenchymale Zellen im Stroma, die Pankreas-Stellatzellen (PSC). Wie auch bei den Leberstellatzellen zu beobachten ist, führen Fibrose-fördernde Mediatoren, zu denen reaktive Sauerstoffspezies, Zytokine und toxische Metabolite gehören, zur Aktivierung der PSCs. PSCs proliferieren und differenzieren zu Myofibroblasten-ähnlichen Zellen. Dabei durchlaufen die aktivierten PSCs verschiedene Stadien, wobei die jeweiligen Zellpopulationen durch die Expression verschiedener Markerproteine, wie z. B. "Glial Fibrillary-Acidic Protein", "alpha-Smooth Muscle Actin" and Nestin, charakterisiert sind. Bei der Untersuchung von Gewebeproben von Patienten mit Pankreatitis und duktalem Pankreaskarzinom konnten wir mittels Immunfluoreszenzanalyse zeigen, dass nur der G-Protein-gekoppelte Melatoninrezeptor (MT)1 in PSCs exprimiert ist, wobei der Gehalt an MT1 in den aktivierten PSCs und den Myofibroblasten in den fibrotischen Gewebsanteilen am höchsten ist. Wir nehmen daher an, dass MT1-Aktivierung durch Melatonin zu einer Hemmung der PSC-Aktivierung und damit der Myofibroblastenbildung führt. Dies könnte erklären, warum Melatoningabe im Tierversuch zu einer Verminderung der Pankreasfibrose führt.

Summary

In chronic pancreatitis and pancreatic cancer, progressive fibrosis with the accumulation of extracellular matrix occurs. The main extracellular matrix-producing cell types are retinoid-storing pancreatic stellate cells (PSCs) of mesenchymal origin. Similar to liver stellate cells, quiescent PSCs undergo activation and acquire a myofibroblast-like phenotype in response to pro-fibrogenic mediators (reactive oxygen species, cytokines and toxic metabolites). Activated PSCs differ in their differentiation stage and are characterized by the expression of glial fibrillary-acidic protein, alpha-smooth muscle actin, and nestin. As G-protein-coupled receptors were described to regulate PSC differentiation, we investigated tissue samples from patients with pancreatitis and ductal pancreatic adenocarcinoma for the expression of G-protein-coupled melatonin receptors MT1 and MT2 by double immunofluorescence staining. We show that MT1, but not MT2, is occasionally expressed in PSCs in normal tissue, while in the diseased tissue MT1 is found at high rates in activated PSCs at all stages, and, additionally, in ductal epithelial cells. It is speculated that MT1 activation by its ligand melatonin regulates proliferation and differentiation of PSCs. Prevention of myofibroblast formation by MT1 activation could explain favourable effects of the pineal hormone melatonin on the outcome of pancreatic fibrosis in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC, Wilson JS. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut, 43: 128–133, 1998

    Article  PubMed  CAS  Google Scholar 

  • Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grünert A, Adler G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 115: 421–432, 1998

    Article  PubMed  CAS  Google Scholar 

  • Vonlaufen A, Apte MV, Imhof BA, Frossard JL. The role of inflammatory and parenchymal cells in acute pancreatitis. J Pathol, 213: 239–248, 2007

    Article  PubMed  CAS  Google Scholar 

  • Jaster R. Molecular regulation of pancreatic stellate cell function. Mol Cancer, 3: 26, 2004

    Article  PubMed  CAS  Google Scholar 

  • Vonlaufen A, Joshi S, Qu C, Phillips PA, Xu Z, Parker NR, Toi CS, Pirola RC, Wilson JS, Goldstein D, Apte MV. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res, 68: 2085–2093, 2008

    Article  PubMed  CAS  Google Scholar 

  • Bachem MG, Zhou Z, Zhou S, Siech M. Role of stellate cells in pancreatic fibrogenesis associated with acute and chronic pancreatitis. Gastroenterol Hepatol, 21: 92–96, 2006

    Article  CAS  Google Scholar 

  • Ijzer J, Roskams T, Molenbeek RF, Ultee T, Penning LC, Rothuizen J, van den Ingh TS. Morphological characterisation of portal myofibroblasts and hepatic stellate cells in the normal dog liver. Comp Hepatol, 5: 7, 2006

    Article  PubMed  CAS  Google Scholar 

  • Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. Clin Invest, 117: 50–59, 2007

    Article  CAS  Google Scholar 

  • Michalski CW, Maier M, Erkan M, Sauliunaite D, Bergmann F, Pacher P, Batkai S, Giese NA, Giese T, Friess H, Kleeff J. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS ONE, 27, 3(2): e1701, 2008

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci, 52: 11–28, 2007

    PubMed  CAS  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature's most versatile biological signal? FEBS J, 273: 2813–2838, 2006

    Article  PubMed  CAS  Google Scholar 

  • Jaworek J, Brzozowski T, Konturek SJ. Melatonin as an organoprotector in the stomach and the pancreas. J Pineal Res, 38: 73–83, 2005

    Article  PubMed  CAS  Google Scholar 

  • Konturek SJ, Konturek PC, Brzozowska I, Pawlik M, Sliwowski Z, Cześnikiewicz-Guzik M, Kwiecień S, Brzozowski T, Bubenik GA, Pawlik WW. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J Physiol Pharmacol, 58: 381–405, 2007

    PubMed  CAS  Google Scholar 

  • Aust S, Obrist P, Jaeger W, Klimpfinger M, Tucek G, Wrba F, Penner E, Thalhammer T. Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium. Lab Invest, 84: 1024–1036, 2004

    Article  PubMed  CAS  Google Scholar 

  • Mühlbauer E, Peschke E. Evidence for the expression of both the MT1- and in addition, the MT2-melatonin receptor, in the rat pancreas, islet and beta-cell. Pineal Res, 42: 105–106, 2007

    Article  CAS  Google Scholar 

  • Roskams T, Cassiman D, De Vos R, Libbrecht L. Neuroregulation of the neuroendocrine compartment of the liver. Nat Rec A Discov Mol Cell Evol Biol, 280: 910–923, 2004

    Article  CAS  Google Scholar 

  • Roozendaal R, Carroll MC. Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev, 219: 157–166, 2007

    Article  PubMed  CAS  Google Scholar 

  • Miller-Kasprzak E, Jagodziński PP. Endothelial progenitor cells as a new agent contributing to vascular repair. Arch Immunol Ther Exp, 55: 247–259, 2007

    Article  CAS  Google Scholar 

  • McNeil HP, Adachi R, Stevens RL. Mast cell-restricted tryptases: structure and function in inflammation and pathogen defense. J Biol Chem, 282: 20785–20789, 2007

    Article  PubMed  CAS  Google Scholar 

  • Cassiman D, Roskams T. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J Heapatol, 37: 527–535, 2002

    Article  Google Scholar 

  • Niles LP, Armstrong KJ, Rincón Castro LM, Dao CV, Sharma R, McMillan CR, Doering LC, Kirkham DL. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci, 5: 41, 2004

    Article  PubMed  CAS  Google Scholar 

  • Carrière C, Seeley ES, Goetze T, Longnecker DS, Korc M. The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl Acad Sci USA, 104: 4437–4442, 2007

    Article  PubMed  CAS  Google Scholar 

  • Aust S, Brucker B, Graf J, Klimpfinger M, Thalhammer T. Melatonin modulates acid/base transport in human pancreatic carcinoma cells. Cell Physiol Biochem, 18: 91–102, 2006

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresia Thalhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aust, S., Jäger, W., Kirschner, H. et al. Pancreatic stellate/myofibroblast cells express G-protein-coupled melatonin receptor 1. Wien Med Wochenschr 158, 575–578 (2008). https://doi.org/10.1007/s10354-008-0599-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-008-0599-7

Schlüsselwörter

Keywords

Navigation