Wiener Medizinische Wochenschrift

, Volume 157, Issue 23–24, pp 606–610 | Cite as

Osteoporosis in a female population from Bratislava – age-related BMD changes

Themenschwerpunkt

Summary

PATIENTS AND METHODS: We analysed 498 women (n = 498) in a Bratislava (BA) population aged 21 to 90. We measured bone mineral density (BMD) in the proximal femur with one densitometric instrument (DXA Osteocore II, France; dual energy X-ray absorptiometry), applying BMD and T-score values in three standard regions of interest: Neck (ROI1), Ward's area (ROI2), Trochanter (ROI3). RESULTS: Measured values of T-score in ROI1, ROI2 had normal distribution and a lognormal distribution of frequency in ROI3. Using χ2 -test (chi-square goodness-of-fit statistics), we determined the distribution of the frequency of T-score values and the percentage of osteoporosis incidence in the Bratislava female population. The osteoporosis incidence, according to T-score values measured in ROI1 was 2.40%, in ROI2 16.34% and in ROI3 3.83%. Following the division of women into ten-year intervals, the statistically significant sample averages of T-score values were decreasing in relation to age only for ROI2. Osteoporosis incidence in age intervals was rising with age for ROI2, for ROI1 the number of osteoporotic patients in the 61 to 70-year interval was lower than in the 41 to 50-year interval, and for ROI3 the number of osteoporotic patients in the 51 to 60-year interval was lower than in the 41 to 50-year interval. Except in the above-mentioned intervals, T-score values decreased in relation to age also in ROI1 and ROI3. According to the analysis of variance, the age category explains 9.6% of the overall variability of T-score values for ROI1, 24.7% for ROI2 and 11.70% for ROI3. CONCLUSIONS: As in ROI2 (Ward's area) a greater fraction of trabecular bone is measured in comparison with ROI1 and ROI3, ROI2 reflects best the age-related BMD changes. In ROI1 and ROI3 the relation was distorted by a greater fraction of cortical bone in comparison with ROI2 and by ostearthritis.

Keywords

Bone mineral density Proximal femur Osteoporosis Women Epidemiological study 

Osteoporose in einer Population aus Bratislava – altersabhängige Knochendichteänderungen

Zusammenfassung

Wir haben bei 498 Frauen aus Bratislava im Alter zwischen 21 und 90 Jahren die Knochendichte im proximalen Bereich des Femurs gemessen (in den "Regions of interest" ROI1 – neck, ROI2 – Ward's area, ROI3 – Trochanter). Auf Grund der empirischen Häufigkeitsverteilung der T-Werte haben wir mit dem χ2 -test (Chi-square goodness-of-fit statistics) in der Grundgruppe der Population die Häufigkeitsverteilung festgestellt. Die entsprechend der T-Werte festgestellte Häufigkeit der Osteoporose betrug in ROI1 2,40 %, in ROI2 16,34 % und in ROI3 3,83 %. Die Patientinnen wurden nach dem Alter in 10-Jahres-Gruppen eingeteilt. In jeder Gruppe wurde die Zahl der Osteoporosepatientinnen in Prozent (%) berechnet. Es hat uns interessiert, welcher ROI für die Feststellung der Altersabhängigkeit der Knochendichte am besten geeignet ist. Obwohl die Werte von ROI2 (Ward's), entsprechend der WHO, nicht zur diagnostischen Sicherstellungen der Osteoporose zugelassen sind, zeigte ROI2 die Altersabhängigkeit der Knochendichte am besten. Gegenüber ROI1 und ROI3 wird in der ROI2 überwiegend trabekulärer Knochen gemessen. Die geringere Altersabhängigkeit der Knochendichte in ROI1 und ROI3 dürfte durch osteoarthrotische Veränderungen bedingt sein. Bei der Streuungsanalyse hat sich gezeigt, dass die Alterskategorie 9,6 % der Ganzvariabilität der T-Werte für ROI1, 24,7 % für ROI2 und 11,7 % für ROI3 erklärt. Im Fisher-Test wurde die statistische Relevanz (α = 0,05) der Altersabhängigkeit der Knochendichtewerte in ROI1, ROI2, ROI3 unabhängig von anderen Risikofaktoren aufgezeigt. Um den Störfaktor der Osteoarthrose auszuschließen, ist die Entwicklung und Anwendung von neuen densitometrischen Methoden, die getrennt kortikalen and trabekularen Knochen messen, notwendig.

Schlüsselwörter

Knochendichte Der proximale Bereich des Femurs Osteoporose Frauen Epidemiologische Studie 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melton LJ, Thamer M, Ray NF, Chan JK, Chesnut CH 3rd, Einhorn TA, Johnston CC, Raisz LG, Silverman SL, Siris ES (1997) Fractures attributable to osteoporosis: Report from the National Osteoporosis Foundation. J Bone Miner Res 12: 16–23CrossRefPubMedGoogle Scholar
  2. Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) How many women have osteoporosis? J Bone Miner Res 7: 1005–1110CrossRefPubMedGoogle Scholar
  3. Blake GM, Knapp KM, Fogelman I (2002) Absolute fracture risk varies with bone density techniques used. A theoretical and in vivo study of fractures cases. J Clin Densitom 5: 109–116CrossRefPubMedGoogle Scholar
  4. McMahon K, Nightingale J, Pocock N (2004) Discordance in DXA male reference ranges. J Clin Densitom 7: 121–126CrossRefPubMedGoogle Scholar
  5. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC (1997) Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 7: 564–569CrossRefPubMedGoogle Scholar
  6. Leib ES, Lewiecki EM, Binkley N, Hamdy RC (2004) Official positions of the international society for clinical densitometry. J Clin Densitom 7: 1–6CrossRefPubMedGoogle Scholar
  7. Hilgers RD, Bauer P, Scheber V (2003) Einführung in die medizinische Statistik, 1. Aufl. Springer, Berlin Heidelberg, pp 217–220CrossRefGoogle Scholar
  8. Pacakova V (2003) Štatistika pre ekonómov (Statistics for economists), 1st ed. IURA Edition, Bratislava, pp 193–234Google Scholar
  9. Matthis C, Weber T, O'Neil W, Raspe H (1998) Health impact associated with vertebral deformities: Results from the European Vertebral Osteoporosis Study (EVOS). Osteoporos Int 8: 364–372CrossRefPubMedGoogle Scholar
  10. Bartl R, Bartl Ch (2004) Osteoporose-Manual. Diagnostik, Prävention und Therapie, 1. Aufl. Springer, Berlin Heidelberg, p 201Google Scholar
  11. Kanis JA, Gluer CC (2000) An update on the diagnosis an assessment of osteoporosis with densitometry. Osteopor Int 11: 192–202CrossRefGoogle Scholar
  12. Oden A, Dawson A, Dere W, Johnell O, Jonsson B, Kanis JA (1998) Lifetime risk of hip fractures is underestimated. Osteoporos In 8: 599–603CrossRefGoogle Scholar
  13. Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9: 1137–1141CrossRefPubMedGoogle Scholar
  14. Faulkner KG, von Stetten E, Steiger P, Miller P (1998) Discrepancies in osteoporosis prevalence at different skeletal sites: impact on the WHO criteria. Bone 23(Suppl): 194Google Scholar
  15. Mazess RB (1999) T-score differ among skeletal sites. Calcif Tissue Int 64: 104Google Scholar
  16. Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68: 74–82CrossRefPubMedGoogle Scholar
  17. Yu W, Gluer CC, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10: 1101–1110PubMedGoogle Scholar
  18. Lafferty FW, Rowland DY (1996) Correlation of dual energy X-ray absorptiometry, quantitative computed tomography and single photon absorptiometry with spinal and non-spinal fractures. Osteoporos Int 6: 407–415CrossRefPubMedGoogle Scholar
  19. Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 2: 82–87CrossRefPubMedGoogle Scholar
  20. Weigert JM (1997) QCT, the most accurate method of measuring bone mineral density? J Bone Miner Res 12: 1954–1955CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Osteological CentreDerer's University Hospital and PoliclinicBratislavaSlovakia
  2. 2.Department of StatisticsUniversity of EconomyBratislavaSlovakia

Personalised recommendations