Skip to main content
Log in

Zur Funktion des β3-Adrenozeptors am Herzen: Signaltransduktion, inotroper Effekt und therapeutischer Ausblick

On the function of β3-adrenoceptors in the human heart: signal transduction, inotropic effect and therapeutic prospects

  • Übersicht
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

β-adrenergic stimulation is an important regulatory mechanism of cardiac function. Next to β1- and β2-adrenoceptors, the expression of a third β-adrenoceptor population, the β3-adrenoceptor, has recently been evidenced in the human heart. Stimulation of cardiac β3-adrenoceptors leads to a decrease in contractility via a release of nitric oxide (NO). In this context, different molecular mechanisms of endothelial nitric oxide synthase (eNOS) activation have been uncovered to occur as a consequence of β3-adrenergic stimulation. In both nonfailing and failing myocardium, β3-adrenergic stimulation may have a protective effect against excessive chatecolaminergic stimulation as it occurs during somatic and mental stress and during heart failure. For this reason, the β3-adrenoceptor is discussed as a possible target for the pharmacological therapy of heart failure.

Zusammenfassung

Die β-adrenerge Stimulation ist einer der wichtigsten Regulationsmechanismen kardialer Funktion. Neben β1- und β2-Adrenorezeptoren wurde eine dritte β-Adrenozeptorpopulation im menschlichen Herzen nachgewiesen, der β3-Adrenozeptor. Die Stimulation kardialer β3-Adrenozeptoren führt über eine Ausschüttung von Stickoxid (NO) zu einer Herabsetzung der kardialen Kontraktilität. Dabei wurden verschiedene molekulare Mechanismen β3-adrenerger Aktivierung der endothelialen Stickoxidsynthase (eNOS) in Kardiomyozyten identifiziert. Im gesunden aber auch im insuffizienten Herzen könnte die β3-adrenerge Stimulation einen Schutzmechanismus gegen exzessive catecholaminerge Stimulation, wie sie bei körperlichem und psychischem Stress, sowie bei der Herzinsuffizienz auftritt, darstellen. Aus diesem Grund wird der β3-Adrenozeptor als Zielprotein für die Pharmakotherapie der Herzinsuffizienz diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

zyklisches Adenosinmonophosphat

cGMP:

zyklisches Guanosinmonophosphat

eNOS:

endotheliale Stickoxidsynthase

GI-protein:

inhibitorisches G-Protein

Gs-protein:

stimulierendes G-protein

L-NMA:

N-Nitro-L-Arginin

L-NAME:

N-Nitro-L-Argininmethylesterhydrochlorid

NO:

Stickoxid

Literatur

  • Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S (1986) β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 59(3): 297–309

    PubMed  CAS  Google Scholar 

  • Wallukat G (2002) The β-adrenergic receptors. Herz 27(7): 683–690

    Article  PubMed  Google Scholar 

  • Xu B, Li J, Gao L, Ferro A (2000) Nitric oxide-dependent vasodilatation of rabbit femoral artery by β2-adrenergic stimulation or cyclic AMP elevation in vivo. Br J Pharmacol 129(5): 969–974

    Article  PubMed  CAS  Google Scholar 

  • Dedkova EN, Wang YG, Blatter LA, Lipsius SL (2002) Nitric oxide signalling by selective β2-adrenoceptor stimulation prevents ACh-induced inhibition of β2-stimulated Ca2+ current in cat atrial myocytes. J Physiol 542(Pt 3): 711–723

    Article  PubMed  CAS  Google Scholar 

  • Kaumann AJ, Preitner F, Sarsero D, Molenaar P, Revelli JP, Giacobino JP (1998) (-)-CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol Pharmacol 53(4): 670–675

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M (2001) Abolition of (-)-CGP 12177-evoked cardiostimulation in double β12-adrenoceptor knockout mice. Obligatory role of β1-adrenoceptors for putative β4-adrenoceptor pharmacology. Naunyn Schmiedebergs Arch Pharmacol 363(1): 87–93

    Article  PubMed  CAS  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46(2): 121–136

    PubMed  CAS  Google Scholar 

  • Leineweber K, Buscher R, Bruck H, Brodde OE (2004) β-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369(1): 1–22

    Article  PubMed  CAS  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human β3-adrenergic receptor. Science 245(4922): 1118–1121

    Article  PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN, Chaudhry A (1993) Characterization of the human β3-adrenergic receptor gene. Mol Pharmacol 44(2): 264–270

    PubMed  CAS  Google Scholar 

  • Roberts SJ, Papaioannou M, Evans BA, Summers RJ (1997) Functional and molecular evidence for β1-, β2- and β3-adrenoceptors in human colon. Br J Pharmacol 120(8): 1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Sennitt MV, Kaumann AJ, Molenaar P, Beeley LJ, Young PW, Kelly J, Chapman H, Henson SM, Berge JM, Dean DK, Kotecha NR, Morgan HK, Rami HK, Ward RW, Thompson M, Wilson S, Smith SA, Cawthorne MA, Stock MJ, Arch JR (1998) The contribution of classical (β1/2-) and atypical β-adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel β3-adrenoceptor agonists of differing selectivities. J Pharmacol Exp Ther 285(3): 1084–1095

    PubMed  CAS  Google Scholar 

  • Trochu JN, Leblais V, Rautureau Y, Beverelli F, Le Marec H, Berdeaux A, Gauthier C (1999) β3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol 128(1): 69–76

    Article  PubMed  CAS  Google Scholar 

  • Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of β3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103(12): 1649–1655

    PubMed  CAS  Google Scholar 

  • Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human β3-adrenoceptor studied using a monoclonal antibody: direct evidence of the β3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23(10): 1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Begin-Heick N (1995) β3-adrenergic activation of adenylyl cyclase in mouse white adipocytes: modulation by GTP and effect of obesity. J Cell Biochem 58(4): 464–473

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry A, MacKenzie RG, Georgic LM, Granneman JG (1994) Differential interaction of β1- and β3-adrenergic receptors with Gi in rat adipocytes. Cell Signal 6(4): 457–465

    Article  PubMed  CAS  Google Scholar 

  • Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102(7): 1377–1384

    PubMed  CAS  Google Scholar 

  • Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O'Hara DS, Kelly RA, Smith TW, Michel T (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270(24): 14582–14586

    Article  PubMed  CAS  Google Scholar 

  • Pott C, Brixius K, Bundkirchen A, Bolck B, Bloch W, Steinritz D, Mehlhorn U, Schwinger RH (2003) The preferential β3-adrenoceptor agonist BRL 37344 increases force via beta1-/beta2-adrenoceptors and induces endothelial nitric oxide synthase via β3-adrenoceptors in human atrial myocardium. Br J Pharmacol 138(3): 521–529

    Article  PubMed  CAS  Google Scholar 

  • Brixius K, Bloch W, Pott C, Napp A, Krahwinkel A, Ziskoven C, Koriller M, Mehlhorn U, Hescheler J, Fleischmann B, Schwinger RH (2004) Mechanisms of β3-adrenoceptor-induced eNOS activation in right atrial and left ventricular human myocardium. Br J Pharmacol 143(8): 1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Goligorsky MS, Li H, Brodsky S, Chen J (2002) Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol 283(1): F1–F10

    PubMed  CAS  Google Scholar 

  • Bloch W, Mehlhorn U, Krahwinkel A, Reiner M, Dittrich M, Schmidt A, Addicks K (2001) Ischemia increases detectable endothelial nitric oxide synthase in rat and human myocardium. Nitric Oxide 5(4): 317–333

    Article  PubMed  CAS  Google Scholar 

  • Michel JB, Feron O, Sase K, Prabhakar P, Michel T (1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272(41): 25907–25912

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736): 601–605

    Article  PubMed  CAS  Google Scholar 

  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736): 597–601

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca2+/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88(11): E68–E75

    PubMed  CAS  Google Scholar 

  • Pott C, Steinritz D, Boelck B, Mehlhorn U, Brixius K, Schwinger RH, Bloch W (2005) eNOS-translocation but not eNOS-phosphorylation is dependent on intracellular Ca2+ in human atrial myocardium. Am J Physiol Cell Physiol [Epub ahead]

  • El-Armouche A, Zolk O, Rau T, Eschenhagen T (2003) Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathway in heart failure. Cardiovasc Res 60(3): 478–487

    Article  PubMed  CAS  Google Scholar 

  • Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265(1 Pt 2): H176–H182

    PubMed  CAS  Google Scholar 

  • Arch JR, Kaumann AJ (1993) β3- and atypical β-adrenoceptors. Med Res Rev 13(6): 663–729

    PubMed  CAS  Google Scholar 

  • Wheeldon NM, McDevitt DG, Lipworth BJ (1994) Cardiac effects of the β3-adrenoceptor agonist BRL35135 in man. Br J Clin Pharmacol 37(4): 363–369

    PubMed  CAS  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional β3-adrenoceptor in the human heart. J Clin Invest 98(2): 556–562

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T, Onishi K, Dohi K, Okinaka T, Isaka N, Nakano T (2000) The negative inotropic effect of β3-adrenoceptor stimulation in the beating guinea pig heart. J Cardiovasc Pharmacol 35(5): 786–790

    Article  PubMed  CAS  Google Scholar 

  • Tavernier G, Toumaniantz G, Erfanian M, Heymann MF, Laurent K, Langin D, Gauthier C (2003) β3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human β3-adrenergic receptor. Cardiovasc Res 59(2): 288–296

    Article  PubMed  CAS  Google Scholar 

  • Keaney JF Jr, Hare JM, Balligand JL, LoscalzoJ, Smith TW, Colucci WS (1996) Inhibition of nitric oxide synthase augments myocardial contractile responses to β-adrenergic stimulation. Am J Physiol 271(6 Pt 2): H2646–H2652

    PubMed  CAS  Google Scholar 

  • Chesnais JM, Fischmeister R, Mery PF (1999) Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart. J Physiol 518 (Pt 2): 449–461

    Article  PubMed  CAS  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5): 388–398

    Article  PubMed  CAS  Google Scholar 

  • Gauthier C, Langin D, Balligand JL (2000) β3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21(11): 426–431

    Article  PubMed  CAS  Google Scholar 

  • Balligand JL (2000) The β3-adrenoceptor: physiological role and potential therapeutic applications. Acta Clin Belg 55(4): 209–214

    PubMed  CAS  Google Scholar 

  • Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine Excretion and Cardiac Stores of Norepinephrine in Congestive Heart Failure. Am J Med 39: 442–451

    Article  PubMed  CAS  Google Scholar 

  • Gaffney TE, Braunwald E (1963) Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med 34: 320–324

    Article  PubMed  CAS  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N Engl J Med 307(4): 205–211

    Article  PubMed  CAS  Google Scholar 

  • Schwinger RH, Bohm M, Erdmann E (1990) Evidence against spare or uncoupled β-adrenoceptors in the human heart. Am Heart J 119(4): 899–904

    Article  PubMed  CAS  Google Scholar 

  • Bristow MR (2000) beta-adrenergic receptor blockade in chronic heart failure. Circulation 101(5): 558–569

    PubMed  CAS  Google Scholar 

  • Ligett SB, Freedman NJ, Schwinn DA (1993) Structural basis for receptor-subtype specific regulation revealed by a chimeric β32-adrenergic receptor. Proc Natl Acad Sci USA 90: 3665–3669

    Article  Google Scholar 

  • Strosberg AD (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2(8): 1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A 90(1): 347–351

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Dessy C, Opel DJ, Arstall MA, Kelly RA, Michel T (1998) Modulation of the endothelial nitricoxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J Biol Chem 273(46): 30249–30254

    Article  PubMed  CAS  Google Scholar 

  • Heymes C, Vanderheyden M, Bronzwaer JG, Shah AM, Paulus WJ (1999) Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 99(23): 3009–3016

    PubMed  CAS  Google Scholar 

  • Chambers JW, Voss GS, Snider JR, Meyer SM, Cartland JL, Wilson RF (1996) Direct in vivo effects of nitric oxide on the coronary circulation. Am J Physiol 271(4 Pt 2): H1584–H1593

    PubMed  CAS  Google Scholar 

  • Loke KE, Laycock SK, Mital S, Wolin MS, Bernstein R, Oz M, Addonizio L, Kaley G, Hintze TH (1999) Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation 100(12): 1291–1297

    PubMed  CAS  Google Scholar 

  • Lefer AM, Lefer DJ (1996) The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res 32(4): 743–751

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Xu B, Forman LJ, Carsia R, Hock CE (2002) L-NAME enhances microcirculatory congestion and cardiomyocyte apoptosis during myocardial ischemia-reperfusion in rats. Shock 17(3): 185–192

    Article  PubMed  Google Scholar 

  • Massion PB, Moniotte S, Balligand JL (2001) Nitric oxide: does it play a role in the heart of the critically ill? Curr Opin Crit Care 7(5): 323–336

    Article  PubMed  CAS  Google Scholar 

  • Moniotte S, Balligand JL (2002) Potential use of β3-adrenoceptor antagonists in heart failure therapy. Cardiovasc Drug Rev 20(1): 19–26

    Article  PubMed  CAS  Google Scholar 

  • Kozlovski VI, Chlopicki S, Gryglewski RJ (2003) Effects of two β3-agonists, CGP 12177A and BRL 37344, on coronary flow and contractility in isolated guinea pig heart. J Cardiovasc Pharmacol 41(5): 706–713

    Article  PubMed  CAS  Google Scholar 

  • Ahmed M, Hanaoka Y, Nagatomo T, Kiso T, Kakita T, Kurose H, Nagao T (2003) Binding and functional affinity of some newly synthesized phenethylamine and phenoxypropanolamine derivatives for their agonistic activity at recombinant human β3-adrenoceptor. J Pharm Pharmacol 55(1): 95–101

    Article  PubMed  CAS  Google Scholar 

  • Saccomanni G, Badawneh M, Adinolfi B, Calderone V, Cavallini T, Ferrarini PL, Greco R, Manera C, Testai L (2003) Synthesis and beta-blocking activity of (R,S)-(E)- oximeethers of 2,3-dihydro-1,8-naphthyridine and 2,3-dihydrothiopyrano[2,3-b]pyridine: identification of β3-antagonists. Bioorg Med Chem 11(23): 4921–4931

    Article  PubMed  CAS  Google Scholar 

  • Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE (1999) Potent and selective human β3-adrenergic receptor antagonists. J Pharmacol Exp Ther 290(2): 649–655

    PubMed  CAS  Google Scholar 

  • Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and β3 adrenoceptors. Br J Pharmacol 144(3): 317–322

    Article  PubMed  CAS  Google Scholar 

  • Ahmed M, Hanaoka Y, Nagatomo T (2002) Structureactivity relationship studies of phenoxypropanolamine derivatives for β3-adrenergic activity. Nippon Yakurigaku Zasshi 120(1): 112P–113P

    PubMed  Google Scholar 

  • Bundkirchen A, Brixius K, Schwinger RH (2004) β-adrenoceptor antagonists in the treatment of chronic heart failure. Pharmazie 59(2): 83–92

    PubMed  CAS  Google Scholar 

  • Bristow MR (1993) Pathophysiologic and pharmacologic rationales for clinical management of chronic heart failure with beta-blocking agents. Am J Cardiol 71(9): 12C–22C

    Article  PubMed  CAS  Google Scholar 

  • Murao K, Yamada M, Yamada K, Uda R, Nakao S, Shingu K (2002) An antagonistic effect of esmolol on β3 adrenoceptor in brown adipose tissue in rats. J Anesth 16(3): 265–267

    Article  PubMed  Google Scholar 

  • de Groot AA, Mathy MJ, van Zwieten PA, Peters SL (2003) Involvement of the β3 adrenoceptor in nebivololinduced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol 42(2): 232–236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Pott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pott, C., Steinritz, D., Napp, A. et al. Zur Funktion des β3-Adrenozeptors am Herzen: Signaltransduktion, inotroper Effekt und therapeutischer Ausblick. Wien Med Wochenschr 156, 451–458 (2006). https://doi.org/10.1007/s10354-006-0273-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-006-0273-x

Keywords

Schlüsselwörter

Navigation