Skip to main content
Log in

Kognitive Störungen und Elektrokrampftherapie

Adverse cognitive effects and ECT

  • Main Topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Electroconvulsive therapy (ECT) is a rapidly acting and highly effective treatment for severe and life threatening conditions seen in affective and schizophrenic diseases. Notwithstanding its therapeutic benefits, ECT remains controversial because of seizure induction, cognitive side effects, memory dysfunction and effects on cerebral physiology. These factors have raised the concern that ECT produces structural and functional brain damages. This issue continues to have a major impact on the acceptance of ECT as a therapeutic modality, both within the medical community and in public opinion. A close look at incidence, type, severity, neurofunctional and -anatomical correlates, aetiology and therapeutic approaches of the adverse cognitive effects attributed to ECT may contribute to rational and objective handling of this topic. The final chapter deals with the issue of whether ECT causes brain damage.

Zusammenfassung

Die Elektrokrampftherapie (EKT) stellt bei korrekter Indikationsstellung und Anwendung ein hochwirksames und bei manchen Indikationen sogar lebensrettendes Therapieverfahren dar. Dennoch nimmt die EKT sowohl in Fachkreisen als auch in der öffentlichen Meinung eine Sonderstellung ein. Unter der Kollegenschaft überwiegt die vorgefasste Meinung, dass diese Behandlungsform zu bleibenden kognitiven und mnestischen Störungen sowie irreversiblen neurologischen Ausfällen führt. Dieser Beitrag soll Basiswissen über Inzidenz, Art, Schweregrad, neurofunktionelle und -anatomische Substrate, Ursachen und Behandlungsform der EKT-bedingten neurokognitiven Nebenwirkungen vermitteln. Auch auf die Frage, ob EKT Gehirngewebe zerstört wird abschliessend eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Conca A, Hinterhuber H, Prapotnik M, Geretsegger C, Frey R, Hausmann A, Hofmann P, Kasper S, Lahousen T, König P, Di Pauli J, Pramsohler B, Rittmansberger H, Wagner W, Pycha R (2004) Konsensuspapier. Die Elektrokrampftherapie: Theorie und Praxis. Anwendungs-Empfehlungen der EKT in Österreich. Neuropsychiatrie 18/1: 1–17

    Google Scholar 

  • Sterling P (2000) ECT damage is easy to find if you look for it. Nature 403: 242

    Article  PubMed  CAS  Google Scholar 

  • Breeding J (2000) Electroshock and informed consent. J Humanistic Psychol 40: 65–80

    Google Scholar 

  • Frank L (1990) Electroshock: death, brain damage, memory loss and brainwashing. J Mind Behaviour 11: 489–512

    Google Scholar 

  • Sackeim H. The cognitive effects of electroconvulsive therapy. In: Moos W, Gamzu E, Thal L. Cognitive disorders: pathophysiology and treatment. Marcel Dekker, New York, 1992

  • Sackeim H, Freeman J, McElhiney M, Coleman E, Prudic J, Devanand D (1992) Effects of major depression on estimates intelligence. J Clin Exp Neuropsychol 14: 268–288

    PubMed  CAS  Google Scholar 

  • Wyatt R (1991) Neuroleptics and the natural course of schizophrenia. Schizophrenia Bull 17: 325–351

    CAS  Google Scholar 

  • Coleman E, Sackeim H, Prudic J, Devanand DP, McElhiney M, Moody J (1996) Subjective memory complaints before and after electroconvulsive therapy. Biol Psychiatry 39: 436–356

    Article  Google Scholar 

  • Devanand D, Fitzsimons L, Prudic J, Sackeim H (1995) Subjective side effects during electroconvulsive therapy. Convulsive Therapy 11: 232–240

    PubMed  CAS  Google Scholar 

  • Rose D, Wykes T, Leese M et al. (2003) Patients' perspectives on electroconvulsive therapy: systematic review. BMJ 326: 1363

    Article  PubMed  Google Scholar 

  • Freeman C, Weeks D, Kendell R (1980) ECT: II. patients who complain. R J Psychiatry 137: 17–25

    CAS  Google Scholar 

  • Koopowitz L, Chur-Hansen A, Reid S, Blashki M (2003) The subjective experience of patients who received electroconvulsive therapy. Aust N Z J Psychiatry 37: 49–54

    Article  PubMed  Google Scholar 

  • Blumenfeld H, Westerveld M, Ostroff R, Vanderhill S, Freeman J, Necochea A, Uranga P, Tanhehco T, Smith A, Seibyl J, Stokking R, Studholme C, Spencer S, Zubal I (2003) Selective frontal, parietal, and temporal networks in generalized seizures. Neuroimage 19(4): 1556–1566

    Article  PubMed  Google Scholar 

  • McNally K, Blumenfeld H (2004) Focal network involvement in generalized seizures: new insights from electroconvulisve therapy. Epilepsy Behav 5(1): 3–12

    Article  PubMed  Google Scholar 

  • Frasca T, Iodice A, McCall W (2003) The relationship between changes in learning and memory after right unilateral electroconvulsive therapy. J ECT 19: 148–150

    PubMed  Google Scholar 

  • Graf P, Squire L, Mandler G (1984) The information that amnesic patients do not forget. J Exp Psychol 10: 164–178

    CAS  Google Scholar 

  • Squire L, Shimamura A, Graf P (1985) Independence of recognition memory and priming effects: a neuropsychological analysis. J Exp Psychol 11: 37–44

    CAS  Google Scholar 

  • Shimamura A, Squire L (1986) Memory and metamemory: a study of the feeling of knowing phenomenon in amnesic patients. J Exp Psychol 12: 452–460

    CAS  Google Scholar 

  • Squire L (1982) Comparison between forms of amnesia: some deficits are unique to Korsakoff's syndrome. J Exp Psychol 8: 560–571

    CAS  Google Scholar 

  • Squire L, Alvarez P (1995) Retrograde amnesia and consolidation: a neurobiological perspective. Curr Opin Neurobiol 5: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Bragin A, Penttonen M, Buzsaki B (1997) Termination of epileptic after discharge in the hippocampus. J Neurosci 17: 2567–2579

    PubMed  CAS  Google Scholar 

  • Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurol 7: 217–227

    Article  CAS  Google Scholar 

  • Reid I, Stewart C (1997) Seizures, memory and synaptic plasticity. Seizure 6: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Nobler M, Sackeim H, Prohovnik I, Moeller J, Mukherjee S, Schnur D, Prudic J, Devanand D (1994) Regional Cerebral Blood Flow in Mood Disorders, III; Treatment and Clinical Response. Arch Gen Psychiatry 51: 884–897

    PubMed  CAS  Google Scholar 

  • Conca A, Prapotnik M, Peschina W, König P (2003) Simultaneous pattern of rCBF and rCMRGlu in continuation ECT: case reports. Psychiatry Res 30; 124(3): 191–198

    Google Scholar 

  • Guze B, Baxter L, Schwartz J, Sztuba M, Liston E (1991) Electroconvulsive therapy and brain glucose metabolism. Convulsive Ther 7: 15–19

    Google Scholar 

  • Weiner R, Rogers H, Davidson J, Kahn E (1986) Effects of electroconvulsive therapy upon brain electrical activity. Ann NY Acad Sci 462: 270–281

    PubMed  CAS  Google Scholar 

  • Damasio A, Eslinger B, Damasio H, Van Hoesen G, Cornell S (1985) Multimodal amnestic syndrome following bilateral temporal and basal forebrain damage. Arch Neurol 42: 252–259

    PubMed  CAS  Google Scholar 

  • Sackeim H, Prudic J, Devanand D, Nobler M, Lisanby S, Peyser S, Fitzsimons L, Moody B, Clark J (2000) A prospective, randomised, double-blind comparison of bilateral and right unilateral ECT at different stimulus intensities. Arch Gen Psychiatry 57: 425–434

    Article  PubMed  CAS  Google Scholar 

  • Weiner R, Rogers H, Davidson J, Squire L (1986) Effects of stimulus parameters on cognitive side effects. Ann NY Acad Sci 462: 315–325

    PubMed  CAS  Google Scholar 

  • Lisanby S, Maddox J, Prudic J, Devanand D, Sackeim H (2000) The effects of electroconvulsive therapy on memory of autobiographical and public events. Arch Gen Psychiatry 57: 581–590

    Article  PubMed  CAS  Google Scholar 

  • Sobin C, Sackeim H, Prudic J, Devanand D, Moody B, McElhiney M (1995) Predictors of retrograde amnesia following ECT. Am J Psychiatry 152: 995–1001

    PubMed  CAS  Google Scholar 

  • Kopelman M (1991) Frontal dysfunction and memory deficits in the alcoholic Korsakoff's syndrome and Alzheimer-type dementia. Brain 114: 117–137

    PubMed  Google Scholar 

  • Shimamura A. Memory and frontal lobe function. In: Gazzaniga M. The cognitive neuroscience. MIT Press, Cambridge MA, 1994

  • Kopelman M, Stanhope N, Kingsley D (1999) Retrograde amnesia in patients with diencephalic, temporal lobe or frontal lesions. Neurpsychologia 37: 939–958

    Article  CAS  Google Scholar 

  • Bailine S, Rifkin A, Kayne E, Selzer J, Vital-Herne J, Blieka M, Pollack S (2000) Comparison of bifrontal and bitemporal ECT for major depression. Am J Psychiatry 157: 121–123

    PubMed  CAS  Google Scholar 

  • Fuster J. The prefrontal cortex. 2nd edition. Raven Press, New York, 1990

    Google Scholar 

  • Jones B, Henderson M, Welch C (1988) Executive functions in unipolar depression before and after electroconvulsive therapy. Int J Neurosci 38: 287–297

    Article  PubMed  CAS  Google Scholar 

  • Alexander G, Crutcher M, DeLong M (1990) Basal gangliathalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. In: Progress in Brain Research, vol 85, edited by Uylings H, Van Eden C, De Bruin J, et al. London: Elsevier 85: 119–146

  • Mega M, Cummings J (1994) Frontal-subcortical circuits in neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6: 358–370

    PubMed  CAS  Google Scholar 

  • Stuss D, Benson D, Clermont R, Della Malva C, Kaplan E, Weir W (1986) Language functioning after bilateral prefrontal leukotomy. Brain Lang 28(1): 66–70

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic P (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational knowledge. In: Handbook of Physiology, vol 5, edited by Plum F, Mountcastle V. Bethesda, MD. American Physiological Society 5: 373–417

  • Rami-Gonzalez L, Bernardo M, Boget T, Salamero M, Gil-Verona J, Junque C (2001) Subtypes of memory dysfunction associated with ECT: characteristics and neurobiological bases. J ECT 17(2): 129–135

    Article  PubMed  CAS  Google Scholar 

  • Mariani S (2004) The biology of memory and learning: conference report. Medscape Molecular Medicine 6(1)

  • Angelucci F, Aloe L, Jimenez-Vasquez P, Mathe A (2003) Electroconvulsive stimuli alter nerve growth factor but not brain-derived neurotrophic factor concentrations in brains of a rat model of depression. Neuropeptides 37(1): 51–56

    Article  PubMed  CAS  Google Scholar 

  • Dias B, Banerjee S, Duman R, Vaidya V (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 45(4): 553–563

    Article  PubMed  CAS  Google Scholar 

  • Madsen T, Treschow A, Bengzon J, Bolwig T, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47: 1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 30: 805–809

    Article  CAS  Google Scholar 

  • Altar C, Laeng P, Jurata L, Brockman J, Lemire A, Bullard J, Bukhman Y, Young T, Charles V, Palfreyman M (2004) Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 24: 2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Coyle J, Duman R (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron. 38: 157–160

    Article  PubMed  CAS  Google Scholar 

  • Conca A, Prapotnik M, Di Pauli J, Wild B (2005) Psychotherapie und Elektrokonvulsionstherapie. Widerspruch oder Ergänzung. Nervenheilkunde 24: 729–735

    Google Scholar 

  • Figiel G, Coffey C, Djang W, Hoffman G, Doraiswamy P (1990) Brain magnetic resonance imaging findings in ECT-induced delirium. J Neuropsychiatry Clin Neurosci 2: 53–58

    PubMed  CAS  Google Scholar 

  • Lerer B, Shapira B, Calev A, Tubi N, Drexler H, Kindler S, Lidsky D, Schwarz J (1995) Antidepressant and cognitive effects of twice- versus three times weekly ECT. Am J Psychiatry 152: 564–570

    PubMed  CAS  Google Scholar 

  • McCall W, Reboussin D, Weiner R, Sackeim H (2000) Titrated, moderately suprathreshold versus fixed, high dose RUL ECT: acute antidepressant and cognitive effects. Arch Gen Psychiatry 57: 438–444

    Article  PubMed  CAS  Google Scholar 

  • Sackeim H, Prudic J, Devanand D, Kiersky J, Fitzsimons L, Moody B, McElhiney M, Coleman E, Settembrino J (1993) Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 328: 839–846

    Article  PubMed  CAS  Google Scholar 

  • Calev A, Gaudino E, Squires N, Zervas I, Fink M (1995) ECT and non-memory cognition: a review. British Journal of clinical Psychology 34: 505–515

    PubMed  Google Scholar 

  • Sackeim H, Long J, Luber B, Moeller J, Prohovnik I, Devanand D, Nobler M (1994) Physical properties and quantification of ECT stimulus: I. Basic principles. Convulsive Ther 10(2): 93–123

    CAS  Google Scholar 

  • Krueger R, Sackeim H, Gamzu E (1992) Pharmacological treatment of the cognitive side effects of ECT: a review. Psychopharmacol Bull 28: 409–424

    PubMed  CAS  Google Scholar 

  • Stern R, Nevels C, Shelhorse M, Prohaska M, Mason G, Prange A (1991) Antidepressant and memory effects of combined thyroid hormone treatment and electroconvulsive therapy: preliminary findings. Biol Psychiatry 30: 623–627

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin E, Tsai G (1998) A glutamatergic model of ECT-induced memory dysfunction. Harv Rev Psychiatry 5: 307–317

    PubMed  CAS  Google Scholar 

  • Krystal A, Weiner R, Dean M, Lindahl V, Tramontozzi L, Falcone G, Coffey C (2003) Comparison of seizure duration, ictal EEG and cognitive effects of ketamine and methohexital anesthesia with ECT. J Neuropsychiatry Clin Neurosci 15: 27–34

    PubMed  CAS  Google Scholar 

  • Prudic J, Fitzimons L, Nobler M, Sackeim H (1999) Naloxone in the prevention of the adverse cognitive effects of ECT: a within, placebo controlled study. Neuropsychopharmacology 21(2): 285–293

    Article  PubMed  CAS  Google Scholar 

  • Tremont G, Stern R (1997) Use of thyroid hormone to deminish the cognitive side effects of psychiatric treatment. Psychopharmacology Bulletin 33: 273–280

    PubMed  CAS  Google Scholar 

  • Tang W, Ungvari G, Leung H (2002) Effect of piracetam on ECT-induced cognitive disturbances: a randomized, placebo-controlled, double-blind study. J ECT 18: 130–137

    Article  PubMed  Google Scholar 

  • Vinekar A, Andrade C, Sriprada V, George J, Joseph T, Chandra J (1998) Attenuation of ECS-induced retrograde amnesia by using an herbal formulation. J ECT 14: 83–88

    PubMed  CAS  Google Scholar 

  • Andrade C, Sudha S, Venkataraman B (2000) Herbal treatments for ECS-induced memory deficits: a review of research and a discussion on animal models. J ECT 16: 144–156

    PubMed  CAS  Google Scholar 

  • Neylan T, Canick J, Hall S, Reus V, Sapolsky R, Wolkowitz O (2001) Cortisol levels predict cognitive impairment induced by electroconvulsive therapy. Biol Psychiatry 50(5): 331–336

    Article  PubMed  CAS  Google Scholar 

  • Dubovsky SL, Buzan R, Thomas M, Kassner C, Cullum C (2001) Nicardipine improves the antidepressant action of ECT but does not improve cognition. J ECT 1: 3–10

    Article  Google Scholar 

  • Moscrip T, Terrace H, Sackeim H, Lisanby S (2004) A primate model of anterograde and retrograde amnesia produced by convulsive treatment. J ECT 20: 26–36

    PubMed  Google Scholar 

  • Shapira B, Calev A, Lerer B (1991) Optimal use of electroconvulsive therapy: choosing a treatment schedule. Psychiatr Clin North Am 14(4): 935–946

    PubMed  CAS  Google Scholar 

  • Frith C, Stevens M, Johnstone E, Deakin J, Lawler P, Crow TJ (1983) Effects of ECT and depression on various aspects of memory. Br J Psychiatry 142: 1–8

    Google Scholar 

  • Wasterlain C, Plum F (1973) Vulnerability of developing rat brain to electroconvulsive seizures. Arch Neurol 29: 38–45

    PubMed  CAS  Google Scholar 

  • Alexander L, Löwenbach H (1944) Experimental studies on electroshock treatment: the intracerebral vascular reaction as an indicator of the path of the current and the threshold of early changes within the brain tissue. J Neuropathol Exp Neurol 3: 139–171

    Article  Google Scholar 

  • Agnew W, McCreery D (1987) Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery 20: 143–147

    PubMed  CAS  Google Scholar 

  • Meldrum B (1978) Physiological changes during prolonged seizures and epileptic brain damage. Neuropädiatrie 9: 203–212

    PubMed  CAS  Google Scholar 

  • Windle W, Krieg W, Arieff A (1945) Failure to detect structural changes in the brain after electrical shock. Quarterly Bull Northwest University Med School 19: 181–188

    Google Scholar 

  • Ley-Valle A (2003) Non invasive intracranial hyperthermia with Electric Capacitive Transference -ECT- Intratumoral and cerebral thermometry results. Neurocirurgia 14(1): 41–45

    CAS  Google Scholar 

  • Squire L, Slater P, Miller P (1981) Retrograde amnesia and bilateral electroconvulsive therapy: long-term followup. Arch Ge. Psychiatry 38: 89–95

    CAS  Google Scholar 

  • Bergsholm P, Larsen J, Rosendahl K, Holsten F (1989) Electroconvulsive therapy and cerebral computed tomography: a prospective study. Acta Psychiatr Scand 80: 566–572

    PubMed  CAS  Google Scholar 

  • Coffey C, Wilkinson W, Weiner R, Parashos I, Djang W, Webb M, Figiel G, Spritzer C (1993) Quantitative cerebral anatomy in depression: a controlled magnetic resonance imaging study. Arch Gen Psychiatry 50: 7–16

    PubMed  CAS  Google Scholar 

  • Puri B, Oatridge A, Saeed N, Ging J, McKee H, Lekh S, Hajnal J (1998) Does electroconvulsive therapy lead to changes in cerebral structure? Br J Psychiatry 173: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Felber S, Pycha R, Hummer M, Aichner F, Fleischhacker W (1993) Localized proton and phosphorus magnetic resonance spectroscopy following electroconvulsive therapy. Biol Psychiatry 33: 651–654

    Article  PubMed  CAS  Google Scholar 

  • Ende G, Braus D, Walter S, Weber-Fahr W, Henn F (2000) The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 57: 937–943

    Article  PubMed  CAS  Google Scholar 

  • Obergriesser T, Ende G, Braus D, Henn F (2003) Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy. J Clin Psychiatry 64: 775–80

    Article  PubMed  Google Scholar 

  • Heyck H (1955) Über einen Hirnbefund ohne Ganglienzellausfälle nach 355 Elektrokrampfbehandlungen. Monatsschrift Psychiatrie und Neurologie 129: 128–137

    Article  CAS  Google Scholar 

  • Lippman S, Manshadi M, Wehry M, Byrd R, Past W, Keller W, Schuster J, Elam S, Meyer D, O'Daniel R (1985) 1250 electroconvulsive treatments without evidence of brain injury. Br J Psychiatry 147: 203–204

    PubMed  CAS  Google Scholar 

  • Fetterman J (1942) Electrocoma therapy of psychoses. Ann Intern Med 17: 775–789

    Google Scholar 

  • Laursen H, Gjerris A, Bolwig T, Barry D (1991) Cerebral edema and vascular permeability to serum proteins following electroconvulsive shock in rats. Convulsive Therapy 7: 237–244

    PubMed  Google Scholar 

  • Madsen T, Treschow A, Bengzon J, Bolwig T, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47(12): 1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B (1983) Metabolic factors during prolonged seizures and their relation to nerve cell death. Adv Neurol 34: 261–276

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association. The practice of ECT: recommendations for treatment, training and privileging. 2nd edition. American Psychiatric Press, Washington DC, 2001

    Google Scholar 

  • Scott A, Douglas R, Whitfield A, Kendell R (1990) Time course of cerebral magnetic resonance imaging study of ECT-treated depressed patients. Biol Psychiatry 27: 102–104

    Article  Google Scholar 

  • Squire L (1986) Memory functions as affected by electroconvulsive therapy. Ann NY Acad Sci 462: 307–314

    PubMed  CAS  Google Scholar 

  • Weaver L, Williams R. The electroconvulsive therapy stimulus. In: Abrams R. Electroconvulsive Therapy: Biological Foundations and Clinical Applications. Spectrum, New York, 1982

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Prapotnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prapotnik, M., Pycha, R., Nemes, C. et al. Kognitive Störungen und Elektrokrampftherapie. Wien Med Wochenschr 156, 200–208 (2006). https://doi.org/10.1007/s10354-005-0237-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-005-0237-6

Keywords

Schlüsselwörter

Navigation