Skip to main content

Advertisement

Log in

Diagnosis and treatment of microvascular invasion in hepatocellular carcinoma

  • review
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

Microvascular invasion (MVI) is currently only confirmed by histopathological studies of surgical specimens. Preoperative diagnosis of MVI combined with clinical treatment is still a research problem and direction in hepatocellular carcinoma (HCC). How to assess the presence of MVI early and give appropriate treatment has become a research hotspot.

Methods

This review focuses on recent advances in MVI-related research, including the use of serum markers, tumor tissue markers, and new imaging techniques to predict MVI, as well as the molecular biology mechanisms and therapeutic advances in MVI.

Results

The emergence of MVI may be caused by the interaction of many complex biological processes and various pathogenic factors. We need to try to select several risk factors and establish a systematic evaluation method to solve their respective deficiencies, so as to provide more practical applications for the preoperative prediction of MVI program. Simultaneously, the preoperative, intraoperative, and postoperative comprehensive treatment strategies for MVI are particularly important.

Conclusion

The presence of MVI is thought to reflect increased capacity for local infiltration and distant metastases and affects the prognosis of HCC patients. To accurately assess MVI early based on some biomarkers prior to surgery, we need to work hard to explore and integrate various treatments to create a personalized treatment plan for MVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018; https://doi.org/10.1038/s41590-018-0044-z.

    Article  PubMed  Google Scholar 

  2. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.

    PubMed  Google Scholar 

  3. Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology. 2015;62(3):792–800.

    PubMed  Google Scholar 

  4. Zheng J, Chakraborty J, Chapman WC, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis. J Am Coll Surg. 2017; https://doi.org/10.1016/j.jamcollsurg.2017.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jang SY, Park SY, Lee HW, et al. The combination of periostin overexpression and microvascular invasion is related to a poor prognosis for hepatocellular carcinoma. Gut Liver. 2016;10(6):948–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Li J, Shen F. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma. 2017.

    Google Scholar 

  7. Pote N, Cauchy F, Albuquerque M, et al. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J Hepatol. 2015;62(4):848–54.

    CAS  PubMed  Google Scholar 

  8. Strilic B, Yang L, Albarran-Juarez J, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536(7615):215–8.

    CAS  PubMed  Google Scholar 

  9. Ding T, Xu J, Zhang Y, et al. Endothelium-coated tumor clusters are associated with poor prognosis and micrometastasis of hepatocellular carcinoma after resection. Cancer. 2011;117(21):4878–89.

    PubMed  Google Scholar 

  10. Roayaie S, Blume IN, Thung SN, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology. 2009;137(3):850–5.

    PubMed  Google Scholar 

  11. Sumie S, Nakashima O, Okuda K, et al. The significance of classifying microvascular invasion in patients with hepatocellular carcinoma. Ann Surg Oncol. 2014;21(3):1002–9.

    PubMed  Google Scholar 

  12. Rodriguez-Peralvarez M, Luong TV, Andreana L, Meyer T, Dhillon AP, Burroughs AK. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability. Ann Surg Oncol. 2013;20(1):325–39.

    PubMed  Google Scholar 

  13. Imura S, Teraoku H, Yoshikawa M, et al. Potential predictive factors for microvascular invasion in hepatocellular carcinoma classified within the Milan criteria. Int J Clin Oncol. 2018;23(1):98–103.

    PubMed  Google Scholar 

  14. Shirabe K, Toshima T, Kimura K, et al. New scoring system for prediction of microvascular invasion in patients with hepatocellular carcinoma. Liver Int. 2014;34(6):937–41.

    CAS  PubMed  Google Scholar 

  15. McHugh PP, Gilbert J, Vera S, Koch A, Ranjan D, Gedaly R. Alpha-fetoprotein and tumour size are associated with microvascular invasion in explanted livers of patients undergoing transplantation with hepatocellular carcinoma. HPB (Oxford). 2010;12(1):56–61.

    Google Scholar 

  16. Kim BK, Han KH, Park YN, et al. Prediction of microvascular invasion before curative resection of hepatocellular carcinoma. J Surg Oncol. 2008;97(3):246–52.

    PubMed  Google Scholar 

  17. Shindoh J, Andreou A, Aloia TA, et al. Microvascular invasion does not predict long-term survival in hepatocellular carcinoma up to 2 cm: reappraisal of the staging system for solitary tumors. Ann Surg Oncol. 2013;20(4):1223–9.

    PubMed  Google Scholar 

  18. Eguchi S, Takatsuki M, Hidaka M, et al. Predictor for histological microvascular invasion of hepatocellular carcinoma: a lesson from 229 consecutive cases of curative liver resection. World J Surg. 2010;34(5):1034–8.

    PubMed  Google Scholar 

  19. Yamashita Y, Tsuijita E, Takeishi K, et al. Predictors for microinvasion of small hepatocellular carcinoma 〈/= 2 cm. Ann Surg Oncol. 2012;19(6):2027–34.

    PubMed  Google Scholar 

  20. Gouw AS, Balabaud C, Kusano H, Todo S, Ichida T, Kojiro M. Markers for microvascular invasion in hepatocellular carcinoma: where do we stand? Liver Transplant. 2011;17(Suppl 2):S72–S80.

    Google Scholar 

  21. Zhao WC, Fan LF, Yang N, Zhang HB, Chen BD, Yang GS. Preoperative predictors of microvascular invasion in multinodular hepatocellular carcinoma. Eur J Surg Oncol. 2013;39(8):858–64.

    CAS  PubMed  Google Scholar 

  22. Hou YF, Wei YG, Yang JY, et al. Microvascular invasion patterns affect survival in hepatocellular carcinoma patients after second hepatectomy. J Surg Res. 2016;200(1):82–90.

    PubMed  Google Scholar 

  23. Esnaola NF, Lauwers GY, Mirza NQ, et al. Predictors of microvascular invasion in patients with hepatocellular carcinoma who are candidates for orthotopic liver transplantation. J Gastrointest Surg. 2002;6(2):224–32. discussion 232.

    PubMed  Google Scholar 

  24. Fujita N, Aishima S, Iguchi T, et al. Histologic classification of microscopic portal venous invasion to predict prognosis in hepatocellular carcinoma. Hum Pathol. 2011;42(10):1531–8.

    PubMed  Google Scholar 

  25. Siegel AB, Wang S, Jacobson JS, et al. Obesity and microvascular invasion in hepatocellular carcinoma. Cancer Invest. 2010;28(10):1063–9.

    PubMed  PubMed Central  Google Scholar 

  26. Yan X, Fu X, Deng M, et al. Infiltrative hepatocellular carcinoma: assessment of factors associated with outcomes in patients undergoing hepatectomy. Medicine. 2016;95(19):e3589.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding ZB, Shi YH, Zhou J, et al. Liver-intestine cadherin predicts microvascular invasion and poor prognosis of hepatitis B virus-positive hepatocellular carcinoma. Cancer. 2009;115(20):4753–65.

    CAS  PubMed  Google Scholar 

  28. Zhu Y, Xu D, Zhang Z, et al. A new laboratory-based algorithm to predict microvascular invasion and survival in patients with hepatocellular carcinoma. Int J Surg. 2018. https://doi.org/10.1016/j.ijsu.2018.07.011

    Article  PubMed  Google Scholar 

  29. Yu Y, Song J, Zhang R, et al. Preoperative neutrophil-to-lymphocyte ratio and tumor-related factors to predict microvascular invasion in patients with hepatocellular carcinoma. Oncotarget. 2017;8(45):79722–30.

    PubMed  PubMed Central  Google Scholar 

  30. Pote N, Cauchy F, Albuquerque M, et al. Contribution of virtual biopsy to the screening of microvascular invasion in hepatocellular carcinoma: a pilot study. Liver Int. 2018;38(4):687–94.

    CAS  PubMed  Google Scholar 

  31. Agopian VG, Harlander-Locke MP, Markovic D, et al. Evaluation of patients with hepatocellular carcinomas that do not produce alpha-fetoprotein. JAMA Surg. 2017;152(1):55–64.

    PubMed  Google Scholar 

  32. Imura S, Teraoku H, Yoshikawa M, et al. Potential predictive factors for microvascular invasion in hepatocellular carcinoma classified within the Milan criteria. Int J Clin Oncol. 2017. https://doi.org/10.1007/s10147-017-1189-8

    Article  PubMed  Google Scholar 

  33. Zheng J, Seier K, Gonen M, et al. Utility of serum inflammatory markers for predicting microvascular invasion and survival for patients with hepatocellular carcinoma. Ann Surg Oncol. 2017;24(12):3706–14.

    PubMed  PubMed Central  Google Scholar 

  34. Kaibori M, Ishizaki M, Matsui K, Kwon AH. Predictors of microvascular invasion before hepatectomy for hepatocellular carcinoma. J Surg Oncol. 2010;102(5):462–8.

    CAS  PubMed  Google Scholar 

  35. Miyaaki H, Nakashima O, Kurogi M, Eguchi K, Kojiro M. Lens culinaris agglutinin-reactive alpha-fetoprotein and protein induced by vitamin K absence II are potential indicators of a poor prognosis: a histopathological study of surgically resected hepatocellular carcinoma. J Gastroenterol. 2007;42(12):962–8.

    CAS  PubMed  Google Scholar 

  36. Iguchi T, Shirabe K, Aishima S, et al. New pathologic stratification of microvascular invasion in Hepatocellular carcinoma: predicting prognosis after living-donor liver transplantation. Transplantation. 2015;99(6):1236–42.

    CAS  PubMed  Google Scholar 

  37. Zhang X, Li J, Shen F, Lau WY. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma. J Gastroenterol Hepatol. 2018;33(2):347–54.

    PubMed  Google Scholar 

  38. Tsang F, Au S, Wei L, et al. Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b. Liver Int. 2015;35(5):1597–606.

    CAS  PubMed  Google Scholar 

  39. Liu M, Wang L, Zhu H, et al. A preoperative measurement of serum microRNA-125b May predict the presence of Microvascular invasion in hepatocellular carcinomas patients. Transl Oncol. 2016;9(3):167–72.

    PubMed  PubMed Central  Google Scholar 

  40. Yu YQ, Wang L, Jin Y, et al. Identification of serologic biomarkers for predicting microvascular invasion in hepatocellular carcinoma. Oncotarget. 2016;7(13):16362–71.

    PubMed  PubMed Central  Google Scholar 

  41. Lao X, Wang X, Liu Y, et al. Association of paraoxonase 1 gene polymorphisms with the risk of hepatitis B virus-related liver diseases in a Guangxi population: a case-control study. Medicine. 2015;94(48):e2179.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang C, Wang Y, Liu S, et al. Quantitative proteomic analysis identified paraoxonase 1 as a novel serum biomarker for microvascular invasion in hepatocellular carcinoma. J Proteome Res. 2013;12(4):1838–46.

    CAS  PubMed  Google Scholar 

  43. Lee S, Kim SH, Lee JE, Sinn DH, Park CK. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma. J Hepatol. 2017;67(3):526–34.

    CAS  PubMed  Google Scholar 

  44. Wu TH, Hatano E, Yamanaka K, et al. A non-smooth tumor margin on preoperative imaging predicts microvascular invasion of hepatocellular carcinoma. Surg Today. 2016;46(11):1275–81.

    CAS  PubMed  Google Scholar 

  45. Chou CT, Chen RC, Lin WC, Ko CJ, Chen CB, Chen YL. Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT and histopathologic correlation. AJR Am J Roentgenol. 2014;203(3):W253–W9.

    PubMed  Google Scholar 

  46. Chou CT, Chen RC, Lee CW, Ko CJ, Wu HK, Chen YL. Prediction of microvascular invasion of hepatocellular carcinoma by pre-operative CT imaging. Br J Radiol. 2012;85(1014):778–83.

    PubMed  PubMed Central  Google Scholar 

  47. Cheung TT, Chan SC, Ho CL, et al. Can positron emission tomography with the dual tracers [11 C]acetate and [18 F]fludeoxyglucose predict microvascular invasion in hepatocellular carcinoma? Liver Transplant. 2011;17(10):1218–25.

    Google Scholar 

  48. Hyun SH, Eo JS, Song BI, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma using (18)F-FDG PET/CT: a multicenter retrospective cohort study. Eur J Nucl Med Mol Imaging. 2018;45(5):720–6.

    CAS  PubMed  Google Scholar 

  49. Xu P, Zeng M, Liu K, Shan Y, Xu C, Lin J. Microvascular invasion in small hepatocellular carcinoma: is it predictable with preoperative diffusion-weighted imaging? J Gastroenterol Hepatol. 2014;29(2):330–6.

    PubMed  Google Scholar 

  50. Yang C, Wang H, Sheng R, Ji Y, Rao S, Zeng M. Microvascular invasion in hepatocellular carcinoma: is it predictable with a new, preoperative application of diffusion-weighted imaging? Clin Imaging. 2017;41:101–5.

    PubMed  Google Scholar 

  51. Wang WT, Yang L, Yang ZX, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion Kurtosis imaging. Radiology. 2018;286(2):571–80.

    PubMed  Google Scholar 

  52. Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Diagnostic Interv Radiol. 2018;24(3):121–7.

    Google Scholar 

  53. Li H, Zhang J, Zheng Z, et al. Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma. Eur J Radiol. 2018;105:65–71.

    PubMed  Google Scholar 

  54. Zhao W, Liu W, Liu H, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma with IVIM diffusion-weighted MR imaging and Gd-EOB-DTPA-enhanced MR imaging. PLoS ONE. 2018;13(5):e197488.

    PubMed  PubMed Central  Google Scholar 

  55. Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J Hepatol. 2012;56(1):267–75.

    PubMed  Google Scholar 

  56. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. 2014;35(5):3945–51.

    CAS  PubMed  Google Scholar 

  57. Wei X, Li N, Li S, et al. Hepatitis B virus infection and active replication promote the formation of vascular invasion in hepatocellular carcinoma. BMC Cancer. 2017;17(1):304.

    PubMed  PubMed Central  Google Scholar 

  58. Yang P, Li QJ, Feng Y, et al. TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell. 2012;22(3):291–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan SX, Yang F, Yang Y, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56(6):2231–41.

    CAS  PubMed  Google Scholar 

  60. Pote N, Alexandrov T, Le Faouder J, et al. Imaging mass spectrometry reveals modified forms of histone H4 as new biomarkers of microvascular invasion in hepatocellular carcinomas. Hepatology. 2013;58(3):983–94.

    CAS  PubMed  Google Scholar 

  61. Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2017;143(1):17–27.

    PubMed  Google Scholar 

  62. Xu ZY, Ding SM, Zhou L, et al. FOXC1 contributes to microvascular invasion in primary hepatocellular carcinoma via regulating epithelial-mesenchymal transition. Int J Biol Sci. 2012;8(8):1130–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49(3):839–50.

    CAS  PubMed  Google Scholar 

  64. Minguez B, Hoshida Y, Villanueva A, et al. Gene-expression signature of vascular invasion in hepatocellular carcinoma. J Hepatol. 2011;55(6):1325–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang KT, Kuo IY, Tsai MC, et al. Factor VII-induced microRNA-135a inhibits autophagy and is associated with poor prognosis in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2017;9:274:283.

    Google Scholar 

  66. Lin J, Lin W, Ye Y, et al. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/beta-catenin signaling. J Exp Clin Cancer Res. 2017;36(1):134. https://doi.org/10.1186/s13046-017-0603-4

    Article  CAS  Google Scholar 

  67. Govaere O, Petz M, Wouters J, et al. The PDGFRalpha-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene. 2017;36(47):6605–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu L, Chen Q, Yao T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget. 2017;8(27):43878–88.

    PubMed  PubMed Central  Google Scholar 

  69. Zhu XT, Yuan JH, Zhu TT, Li YY, Cheng XY. Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J. 2016;283(20):3739–54.

    CAS  PubMed  Google Scholar 

  70. Jeon Y, Kim H, Jang ES, et al. Expression profile and prognostic value of glypican-3 in post-operative South Korean hepatocellular carcinoma patients. APMIS. 2016;124(3):208–15.

    CAS  PubMed  Google Scholar 

  71. Calderaro J, Rousseau B, Amaddeo G, et al. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology. 2016;64(6):2038–46.

    CAS  PubMed  Google Scholar 

  72. Liu WT, Jing YY, Yu GF, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett. 2015;358(2):136–43.

    CAS  PubMed  Google Scholar 

  73. Cai Z, Zeng Y, Xu B, et al. Galectin-4 serves as a prognostic biomarker for the early recurrence/metastasis of hepatocellular carcinoma. Cancer Sci. 2014;105(11):1510–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Govaere O, Komuta M, Berkers J, et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut. 2014;63(4):674–85.

    CAS  PubMed  Google Scholar 

  75. Park Y, Yu E. Expression of metallothionein-1 and metallothionein-2 as a prognostic marker in hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28(9):1565–72.

    CAS  PubMed  Google Scholar 

  76. Shim JH, Lee HC, Han S, Kang HJ, Yu E, Lee SG. Hepatocyte nuclear factor 1beta is a novel prognostic marker independent of the Milan criteria in transplantable hepatocellular carcinoma: a retrospective analysis based on tissue microarrays. Liver Transplant. 2013;19(3):336–45.

    Google Scholar 

  77. Chung KY, Cheng IK, Ching AK, Chu JH, Lai PB, Wong N. Block of proliferation 1 (BOP1) plays an oncogenic role in hepatocellular carcinoma by promoting epithelial-to-mesenchymal transition. hepatology. 2011;54(1):307–18.

    CAS  PubMed  Google Scholar 

  78. Yang B, Liu Y, Zhao J, et al. Ectopic overexpression of filamin C scaffolds MEK1/2 and ERK1/2 to promote the progression of human hepatocellular carcinoma. Cancer Lett. 2017;388:167–76.

    CAS  PubMed  Google Scholar 

  79. Liu Z, Chang Q, Yang F, et al. Long non-coding RNA NEAT1 overexpression is associated with unfavorable prognosis in patients with hepatocellular carcinoma after hepatectomy: a Chinese population-based study. Eur J Surg Oncol. 2017;43(9):1697–703.

    CAS  PubMed  Google Scholar 

  80. Zhou ZJ, Dai Z, Zhou SL, et al. Overexpression of HnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma. Int J Cancer. 2013;132(5):1080–9.

    CAS  PubMed  Google Scholar 

  81. Zhuang LK, Yang YT, Ma X, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiao C, Wang C, Cheng S, et al. The significance of low levels of LINC RP1130-1 expression in human hepatocellular carcinoma. Biosci Trends. 2016;10(5):378–85.

    CAS  PubMed  Google Scholar 

  83. Nault JC, Galle PR, Marquardt JU. The role of molecular enrichment on future therapies in hepatocellular carcinoma. J Hepatol. 2018;69(1):237–47.

    CAS  PubMed  Google Scholar 

  84. Yamashita Y, Shirabe K, Aishima S, Maehara Y. Predictors of microvascular invasion in hepatocellular carcinoma. Dig Dis. 2015;33(5):655–60.

    PubMed  Google Scholar 

  85. Agopian VG, Harlander-Locke M, Zarrinpar A, et al. A novel prognostic nomogram accurately predicts hepatocellular carcinoma recurrence after liver transplantation: analysis of 865 consecutive liver transplant recipients. J Am Coll Surg. 2015;220(4):416–27.

    PubMed  Google Scholar 

  86. Yamashita YI, Imai K, Yusa T, et al. Microvascular invasion of single small hepatocellular carcinoma 〈/=3 cm: Predictors and optimal treatments. Ann Gastroenterol Surg. 2018;2(3):197–203.

    PubMed  PubMed Central  Google Scholar 

  87. Zhao H, Hua Y, Lu Z, et al. Prognostic value and preoperative predictors of microvascular invasion in solitary hepatocellular carcinoma 〈/= 5 cm without macrovascular invasion. Oncotarget. 2017;8(37):61203–14.

    PubMed  PubMed Central  Google Scholar 

  88. Cucchetti A, Piscaglia F, Grigioni AD, et al. Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: a pilot study. J Hepatol. 2010;52(6):880–8.

    PubMed  Google Scholar 

  89. Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria. JAMA Surg. 2016;151(4):356–63.

    PubMed  Google Scholar 

  90. Lai Q, Nicolini D, Inostroza Nunez M, et al. A novel prognostic index in patients with hepatocellular cancer waiting for liver transplantation: time-radiological-response-alpha-fetoprotein-INflammation (TRAIN) score. Ann Surg. 2016;264(5):787–96.

    PubMed  Google Scholar 

  91. Pote N, Cauchy F, Albuquerque M, et al. Contribution of virtual biopsy to the screening of microvascular invasion in hepatocellular carcinoma: A pilot study. Liver Int. 2018;38(4):687–94.

    PubMed  Google Scholar 

  92. Lim KC, Chow PK, Allen JC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg. 2011;254(1):108–13.

    PubMed  Google Scholar 

  93. Bockhorn M, Sotiropoulos G, Neuhaus J, et al. Prognostic impact of intrahepatic lymphatic and microvascular involvement in cases of colorectal liver metastases. Int J Colorectal Dis. 2009;24(7):845–50.

    PubMed  Google Scholar 

  94. Ho CM, Hu RH, Lee PH, Wu YM, Ho MC. Long-term survival in patients with T2 hepatocellular carcinoma after primary curative resection can be further stratified by tumor size. Medicine. 2014;93(27):e203.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Grat M, Stypulkowski J, Patkowski W, et al. Limitations of predicting microvascular invasion in patients with hepatocellular cancer prior to liver transplantation. Sci Rep. 2017;7:39881.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10(1):35–43.

    PubMed  Google Scholar 

  97. Vitale A, Huo TL, Cucchetti A, et al. Survival benefit of liver transplantation versus resection for Hepatocellular carcinoma: impact of MELD score. Ann Surg Oncol. 2015;22(6):1901–7.

    PubMed  Google Scholar 

  98. El-Fattah MA. Hepatocellular carcinoma biology predicts survival outcome after liver transplantation in the USA. Indian J Gastroenterol. 2017;36(2):117–25.

    PubMed  Google Scholar 

  99. Vitale A, Cucchetti A, Qiao GL, et al. Is resectable hepatocellular carcinoma a contraindication to liver transplantation? A novel decision model based on “number of patients needed to transplant” as measure of transplant benefit. J Hepatol. 2014;60(6):1165–71.

    CAS  PubMed  Google Scholar 

  100. Jiang JH, Guo Z, Lu HF, et al. Adjuvant transarterial chemoembolization after curative resection of hepatocellular carcinoma: propensity score analysis. World J Gastroenterol. 2015;21(15):4627–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goh BK, Chow PK, Teo JY, et al. Number of nodules, Child-Pugh status, margin positivity, and microvascular invasion, but not tumor size, are prognostic factors of survival after liver resection for multifocal hepatocellular carcinoma. J Gastrointest Surg. 2014;18(8):1477–85.

    PubMed  Google Scholar 

  102. Nishikawa H, Arimoto A, Wakasa T, Kita R, Kimura T, Osaki Y. Effect of transcatheter arterial chemoembolization prior to surgical resection for hepatocellular carcinoma. Int J Oncol. 2013;42(1):151–60.

    CAS  PubMed  Google Scholar 

  103. Renzulli M, Buonfiglioli F, Conti F, et al. Imaging features of microvascular invasion in hepatocellular carcinoma developed after direct-acting antiviral therapy in HCV-related cirrhosis. Eur Radiol. 2018;28(2):506–13.

    PubMed  Google Scholar 

  104. Li Z, Lei Z, Xia Y, et al. Association of preoperative antiviral treatment with Incidences of microvascular invasion and early tumor recurrence in hepatitis B virus-related hepatocellular carcinoma. JAMA Surg. 2018; https://doi.org/10.1001/jamasurg.2018.2721.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Braunwarth E, Stattner S, Fodor M, et al. Surgical techniques and strategies for the treatment of primary liver tumours: hepatocellular and cholangiocellular carcinoma. Eur Surg. 2018;50(3):100–12.

    PubMed  PubMed Central  Google Scholar 

  106. Pereyra D, Starlinger P. Shaping the future of liver surgery: Implementation of experimental insights into liver regeneration. Eur Surg. 2018;50(3):132–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou Y, Xu D, Wu L, Li B. Meta-analysis of anatomic resection versus nonanatomic resection for hepatocellular carcinoma. Langenbecks Arch Surg. 2011;396(7):1109–17.

    PubMed  Google Scholar 

  108. Okamura Y, Ito T, Sugiura T, Mori K, Uesaka K. Anatomic versus nonanatomic hepatectomy for a solitary hepatocellular carcinoma : a case-controlled study with propensity score matching. J Gastrointest Surg. 2014;18(11):1994–2002.

    PubMed  Google Scholar 

  109. Cucchetti A, Qiao GL, Cescon M, et al. Anatomic versus nonanatomic resection in cirrhotic patients with early hepatocellular carcinoma. Surgery. 2014;155(3):512–21.

    PubMed  Google Scholar 

  110. Zhao H, Chen C, Fu X, et al. Prognostic value of a novel risk classification of microvascular invasion in patients with hepatocellular carcinoma after resection. Oncotarget. 2017;8(3):5474–86.

    PubMed  Google Scholar 

  111. Marubashi S, Gotoh K, Akita H, et al. Anatomical versus non-anatomical resection for hepatocellular carcinoma. Br J Surg. 2015;102(7):776–84.

    CAS  PubMed  Google Scholar 

  112. Kishi Y, Hasegawa K, Kaneko J, et al. Resection of segment VIII for hepatocellular carcinoma. Br J Surg. 2012;99(8):1105–12.

    CAS  PubMed  Google Scholar 

  113. Hirokawa F, Hayashi M, Miyamoto Y, et al. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma. Hepatol Res. 2014;44(8):846–53.

    CAS  PubMed  Google Scholar 

  114. Hou YF, Li B, Wei YG, et al. Second Hepatectomy improves survival in patients with microvascular invasive hepatocellular carcinoma meeting the Milan criteria. Medicine. 2015;94(48):e2070.

    PubMed  PubMed Central  Google Scholar 

  115. Mehta N, Heimbach J, Harnois DM, et al. Validation of a risk estimation of tumor recurrence after transplant (RETREAT) score for Hepatocellular carcinoma recurrence after liver transplant. JAMA Oncol. 2017;3(4):493–500.

    PubMed  PubMed Central  Google Scholar 

  116. Suh SW, Lee JM, You T, et al. Hepatic venous congestion in living donor grafts in liver transplantation: is there an effect on hepatocellular carcinoma recurrence? Liver Transplant. 2014;20(7):784–90.

    Google Scholar 

  117. Sun JJ, Wang K, Zhang CZ, et al. Postoperative adjuvant transcatheter arterial chemoembolization after R0 hepatectomy improves outcomes of patients who have hepatocellular carcinoma with Microvascular invasion. Ann Surg Oncol. 2016;23(4):1344–51.

    PubMed  Google Scholar 

  118. Jin YJ, Lee JW, Lee OH, et al. Transarterial chemoembolization versus surgery/radiofrequency ablation for recurrent hepatocellular carcinoma with or without microvascular invasion. J Gastroenterol Hepatol. 2014;29(5):1056–64.

    PubMed  Google Scholar 

  119. Gao Z, Du G, Pang Y, et al. Adjuvant transarterial chemoembolization after radical resection contributed to the outcomes of hepatocellular carcinoma patients with high-risk factors. Medicine. 2017;96(33):e7426.

    PubMed  PubMed Central  Google Scholar 

  120. Wang L, Wang W, Yao X, et al. Postoperative adjuvant radiotherapy is associated with improved survival in hepatocellular carcinoma with microvascular invasion. Oncotarget. 2017;8(45):79971–81.

    PubMed  PubMed Central  Google Scholar 

  121. Kadam PD, Chuan HH. Erratum to: rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament. Int Urogynecol J Pelvic Floor Dysfunct. 2016;27(3):505.

    Google Scholar 

  122. Finn RS, Zhu AX, Farah W, et al. Therapies for advanced stage hepatocellular carcinoma with macrovascular invasion or metastatic disease: a systematic review and meta-analysis. Hepatology. 2018;67(1):422–35.

    CAS  PubMed  Google Scholar 

  123. Wang SN, Chuang SC, Lee KT. Efficacy of sorafenib as adjuvant therapy to prevent early recurrence of hepatocellular carcinoma after curative surgery: a pilot study. Hepatol Res. 2014;44(5):523–31.

    CAS  PubMed  Google Scholar 

  124. Bruix J, Takayama T, Mazzaferro V, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015;16(13):1344–54.

    CAS  PubMed  Google Scholar 

  125. Elewa MA, Al-Gayyar MM, Schaalan MF, Abd El Galil KH, Ebrahim MA, El-Shishtawy MM. Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clin Exp Metastasis. 2015;32(5):479–93.

    CAS  PubMed  Google Scholar 

  126. Borderud SP, Li Y, Burkhalter JE, Sheffer CE, Ostroff JS. Electronic cigarette use among patients with cancer: characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer. 2014;120(22):3527–35.

    PubMed  Google Scholar 

  127. Mazzaferro V, Romito R, Schiavo M, et al. Prevention of hepatocellular carcinoma recurrence with alpha-interferon after liver resection in HCV cirrhosis. Hepatology. 2006;44(6):1543–54.

    CAS  PubMed  Google Scholar 

  128. Chen R, Yu H, An Y‑L, Chen H‑J, Teng G‑J. Endothelial progenitor cells combined with cytosine deaminase-endostatin for suppression of liver carcinoma. J Biomed Nanotechnol. 2016;12(6):1174–82.

    CAS  PubMed  Google Scholar 

  129. Chen K, Xia Y, Wang H, Xiao F, Xiang G, Shen F. Adjuvant iodine-125 brachytherapy for hepatocellular carcinoma after complete hepatectomy: a randomized controlled trial. PLoS ONE. 2013;8(2):e57397.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Imai K, Yamashita YI, Yusa T, et al. Microvascular invasion in small-sized hepatocellular carcinoma: significance for outcomes following hepatectomy and radiofrequency ablation. Anticancer Res. 2018;38(2):1053–60.

    PubMed  Google Scholar 

  131. Meniconi RL, Komatsu S, Perdigao F, Boelle PY, Soubrane O, Scatton O. Recurrent hepatocellular carcinoma: a Western strategy that emphasizes the impact of pathologic profile of the first resection. Surgery. 2015;157(3):454–62.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by The Key Project of Natural Science Foundation of Fujian Province (grant nos. 2016J01585 and 2016J01592) and The Army’s Logistics Medical Research Major Projects Fund Grants for Yi Jiang (grant nos. CNJ15J002 and 14ZX22); Startup Fund for scientific research, Fujian Medical University for Rui-Sheng Ke (2017XQ2048) and NO. 900 Hospital of the Joint Logistics Team Construction Special Funding for Department of Hepatobiliary Surgery (grant nos. 2014CXTD05 and 2018Q06 and 2018J02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Zhi Lv MD or Yi Jiang MD, PhD.

Ethics declarations

Conflict of interest

R.-S. Ke, Q.-c. Cai, Y.-t. Chen, L.-Z. Lv, and Y. Jiang declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R.-S. Ke, Q.-c. Cai, and Y.-t. Chen contributed equally to the manuscript. Yi Jiang and Li-Zhi Lv proposed ideas and designed the research. Rui-Sheng Ke, Qiu-cheng Cai, and Yong-tai Chen searched and analyzed literature. Yong-tai Chen and Rui-Sheng Ke completed the minor revision. The manuscript was drafted by Rui-Sheng Ke. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, RS., Cai, Qc., Chen, Yt. et al. Diagnosis and treatment of microvascular invasion in hepatocellular carcinoma. Eur Surg 52, 55–68 (2020). https://doi.org/10.1007/s10353-019-0573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-019-0573-1

Keywords

Navigation