Skip to main content
Log in

Articular cartilage tissue regeneration—current research strategies and outlook for the future

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

Tissue engineering of articular cartilage has always been a major focus of interest in regenerative medicine. Despite considerable progress, and some of the strategies being at a routine clinical stage, the real breakthrough in cartilage repair with satisfying long-term clinical results, has still not been achieved.

Methods

This review provides an overview of the current basic and clinical research strategies in cartilage regeneration. In addition to the available cell types, several natural and synthetic scaffolds including their respective performance in in vitro cartilage formation and in vivo cartilage regeneration are described. Moreover, bioreactor systems that mimic the mechanical loading of articular cartilage, either to provide an additional stimulus for tissue maturation prior to implantation or to study the effects of mechanical forces on cells for cartilage repair, are demonstrated.

Results

Limitations of the current strategies are highlighted and discussed with a special focus on integration of neocartilage into the adjacent host cartilage tissue.

Conclusion

As this integration still represents an ongoing hurdle, engineering strategies targeting the interfaces have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013 Jan;29(1):174–86.

    Article  PubMed  Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science. 1993 May 14;260(5110):920–6.

    Article  PubMed  CAS  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 Oct 6;331(14):889–95.

    Article  PubMed  CAS  Google Scholar 

  4. Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–21.

    Article  PubMed  CAS  Google Scholar 

  5. Ofek G, Revell CM, Hu JC, Allison DD, Grande-Allen KJ, Athanasiou KA. Matrix development in self-assembly of articular cartilage. PLoS One. 2008 Jan;3(7):e2795.

    Article  PubMed  CAS  Google Scholar 

  6. Adkisson HD, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010 Jul;38(7):1324–33.

    Article  PubMed  Google Scholar 

  7. Schubert T, Anders S, Neumann E, Schölmerich J, Hofstädter F, Grifka J, et al. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int J Mol Med. 2009 Apr;23(4):455–60.

    PubMed  CAS  Google Scholar 

  8. Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E, et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012 Nov;40(11):2499–508.

    Article  PubMed  Google Scholar 

  9. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143–7.

    Article  PubMed  CAS  Google Scholar 

  10. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006 Oct;54(10):3254–66.

    Article  PubMed  CAS  Google Scholar 

  11. Hildner F, Concaro S, Peterbauer A, Wolbank S, Danzer M, Lindahl A, et al. Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes. Tissue Eng Part A. 2009 Dec;15(12):3961–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sabatino MA, Santoro R, Gueven S, Jaquiery C, Wendt DJ, Martin I, et al. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells. J Tissue Eng Regen Med. 2012 Dec 6.

  13. Wu L, Prins H-J, Helder MN, Van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A. 2012 Aug;18(15–16):1542–51.

    Article  PubMed  CAS  Google Scholar 

  14. Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. BioMaterials. 2011 Feb;32(4):1032–40.

    Article  PubMed  CAS  Google Scholar 

  15. Piez KA Collagen. In: Kroschwitz JI, editor. Encyclopedia of polymer science and engineering. New York: Wiley-VCH; 1985. pp. 699–727.

    Google Scholar 

  16. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004 Nov 15;71(2):343–54.

    Article  PubMed  CAS  Google Scholar 

  17. Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997 Jan;38(2):95–104.

    Article  PubMed  CAS  Google Scholar 

  18. Frenkel SR, Toolan B, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br. 1997 Sep;79(5):831–6.

    Article  PubMed  CAS  Google Scholar 

  19. Noguchi T, Oka M, Fujino M, Neo M, Yamamuro T. Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts. Clin Orthop Relat Res. 1994 May;(302):251–8.

  20. Sams AE, Minor RR, Wootton JA, Mohammed H, Nixon AJ. Local and remote matrix responses to chondrocyte-laden collagen scaffold implantation in extensive articular cartilage defects. Osteoarthritis Cartilage. 1995 Mar;3(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  21. Samuel RE, Lee CR, Ghivizzani SC, Evans CH, Yannas IV, Olsen BR, et al. Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Hum Gene Ther. 2002 May 1;13(7):791–802.

    Article  PubMed  CAS  Google Scholar 

  22. Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D’Augusta DA, et al. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am. 2000 Feb;82(2):151–60.

    PubMed  CAS  Google Scholar 

  23. Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. BioMaterials. 2013 Jan;34(3):713–23.

    Article  PubMed  CAS  Google Scholar 

  24. Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 2002 Mar;84(2):276–88.

    Article  PubMed  CAS  Google Scholar 

  25. Keibl C, Fügl A, Zanoni G, Tangl S, Wolbank S, Redl H, et al. Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury. 2011 Aug;42(8):814–20.

    Article  PubMed  Google Scholar 

  26. Fortier LA, Nixon AJ, Lust G. Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res. 2002 Feb;63(2):301–5.

    Article  PubMed  CAS  Google Scholar 

  27. Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 1994 Jul;12(4):485–97.

    Article  PubMed  CAS  Google Scholar 

  28. Nixon AJ, Saxer RA, Brower-Toland BD. Exogenous insulin-like growth factor-I stimulates an autoinductive IGF-I autocrine/paracrine response in chondrocytes. J Orthop Res. 2001 Jan;19(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  29. De Boer MT, Boonstra EA, Lisman T, Porte RJ. Role of fibrin sealants in liver surgery. Dig Surg. 2012 Jan;29(1):54–61.

    Article  PubMed  Google Scholar 

  30. Ishii K, Kawashima H, Hayama T, Asai T, Kamikawa S, Sakamoto W, et al. Combination of a liquid fibrin sealant with sheet-type hemostatic agents: experimental evaluation in partial nephrectomy animal model. Int J Urol. 2011 Jun;18(6):478–82.

    Article  PubMed  Google Scholar 

  31. Chen TM, Tsai J-C, Burnouf T. A novel technique combining platelet gel, skin graft, and fibrin glue for healing recalcitrant lower extremity ulcers. Dermatol Surg. 2010 Apr;36(4):453–60.

    Article  PubMed  CAS  Google Scholar 

  32. Bouwmeester SJ, Beckers JM, Kuijer R, Van der Linden AJ, Bulstra SK. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop. 1997 Jan;21(5):313–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kawabe N, Yoshinao M. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants. Clin Orthop Relat Res. 1991 Jul;(268):279–93.

  34. Baier Leach J, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng. 2003 Jun 5;82(5):578–89.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. BioMaterials. 2004;25(7–8):1339–48.

    Article  PubMed  CAS  Google Scholar 

  36. Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993 Aug;39:3–9.

    PubMed  CAS  Google Scholar 

  37. Balazs EA. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg Technol Int. 2004 Jan;12:278–89.

    PubMed  Google Scholar 

  38. Antonas KN, Fraser JR, Muirden KD. Distribution of biologically labelled radioactive hyaluronic acid injected into joints. Ann Rheum Dis. 1973 Mar;32(2):103–11.

    Article  PubMed  CAS  Google Scholar 

  39. Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 2002 Oct;8(5):827–37.

    Article  PubMed  CAS  Google Scholar 

  40. Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. BioMaterials. 2001 Sep;22(17):2417–24.

    Article  PubMed  CAS  Google Scholar 

  41. Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, et al. Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng. 2002 Apr;8(2):333–47.

    Article  PubMed  CAS  Google Scholar 

  42. Brun P, Zavan B, Vindigni V, Schiavinato A, Pozzuoli A, Iacobellis C, et al. In vitro response of osteoarthritic chondrocytes and fibroblast-like synoviocytes to a 500–730 kDa hyaluronan amide derivative. J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2073–81.

    PubMed  Google Scholar 

  43. Ariyoshi W, Takahashi N, Hida D, Knudson CB, Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. Arthritis Rheum. 2012 Jan;64(1):187–97.

    Article  PubMed  CAS  Google Scholar 

  44. Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br. 2005 Aug;87(8):1143–9.

    PubMed  CAS  Google Scholar 

  45. Wang Y, Kim H-JJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006 Dec;27(36):6064–82.

    Article  PubMed  CAS  Google Scholar 

  46. Macintosh AC, Kearns VR, Crawford A, Hatton PV. Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med.. 2008 March;2(2–3):71–80.

    Article  PubMed  CAS  Google Scholar 

  47. Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004 Nov 5;88(3):379–91.

    Article  PubMed  CAS  Google Scholar 

  48. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. BioMaterials. 2006 Dec;27(36):6138–49.

    Article  PubMed  CAS  Google Scholar 

  49. Wang Y, Blasioli DJ, Kim HSH-J, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. BioMaterials. 2006 Sep;27(25):4434–42.

    Article  PubMed  CAS  Google Scholar 

  50. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006 Oct;12(10):2729–38.

    Article  PubMed  CAS  Google Scholar 

  51. Chu CR, Dounchis JS, Yoshioka M, Sah RL, Coutts RD, Amiel D. Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res. 1997 Jul;(340):220–9.

  52. Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res. 2000 Aug;(377):248–64.

  53. Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng. 2002 Aug;8(4):709–21.

    Article  PubMed  CAS  Google Scholar 

  54. Evans JD. Sikdar SK. Biodegradable plastics: an idea whose time has come? Chem Technol. 1990;20(1):38–42.

    CAS  Google Scholar 

  55. Lee N, JH O, Hong C, Suh H, Hong S. Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnol Bioprocess Eng. 2009;14:180–6.

    Article  CAS  Google Scholar 

  56. Mehlhorn AT, Zwingmann J, Finkenzeller G, Niemeyer P, Dauner M, Stark B, et al. Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A. 2009 May;15(5):1159–67.

    Article  PubMed  CAS  Google Scholar 

  57. Wu S-C, Chang J-K, Wang C-K, Wang G-J, Ho M-L. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. BioMaterials. 2010 Feb;31(4):631–40.

    Article  PubMed  CAS  Google Scholar 

  58. Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res. 2002 Mar 5;59(3):429–37.

    Article  PubMed  CAS  Google Scholar 

  59. Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules. 2009 Mar 9;10(3):541–6.

    Article  PubMed  CAS  Google Scholar 

  60. Emans PJ, Jansen EJP, Van Iersel D, Welting TJM, Woodfield TBF, Bulstra SK, et al. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med. 2012 Mar 21;Epub ahead.

  61. Malda J, Woodfield TBF, Van der Vloodt F, Wilson C, Martens DE, Tramper J, et al. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. BioMaterials. 2005 Jan;26(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  62. Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N Y Acad Sci. 1999;875:24–35.

    Article  PubMed  CAS  Google Scholar 

  63. Kuś WM, Górecki A, Strzelczyk P, Swiader P. Carbon fiber scaffolds in the surgical treatment of cartilage lesions. Ann Transplant. 1999 Jan;4(3–4):101–2.

  64. Benke G, Strzelczyk P, Kowalski M, Swiader P. The use of carbon fibers to restore cartilage defects in the knee. Ortop Traumatol Rehabil. 2001 Apr 30;3(2):227–9.

    PubMed  CAS  Google Scholar 

  65. Havlas V, Kos P, Jendelová P, Lesný P, Trč T, Syková E. Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells. Acta Chir Orthop Traumatol Cech. 2011 Jan;78(2):138–44.

    PubMed  CAS  Google Scholar 

  66. Huang AH, Stein A, Tuan RS, Mauck RL. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A. 2009 Nov;15(11):3461–72.

    Article  PubMed  CAS  Google Scholar 

  67. Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res. 2012 Mar;347(3):521–44.

    Article  PubMed  CAS  Google Scholar 

  68. Heath CA, Magari SR. Mini-review: mechanical factors affecting cartilage regeneration in vitro. Biotechnol Bioeng. 1996 May 20;50(4):430–7.

    Article  PubMed  CAS  Google Scholar 

  69. Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007 May;36(4–5):539–68.

    Article  PubMed  CAS  Google Scholar 

  70. Moretti M, Wendt D, Dickinson SC, Sims TJ, Hollander AP, Kelly DJ, et al. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng. 2005;11(9–10):1421–8.

    Article  PubMed  CAS  Google Scholar 

  71. Afoke NY, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg Br. 1987 Aug;69(4):536–41.

    PubMed  CAS  Google Scholar 

  72. Sironen RK, Karjalainen HM, Törrönen K, Elo MA, Kaarniranta K, Takigawa M, et al. High pressure effects on cellular expression profile and mRNA stability. A cDNA array analysis. Biorheology. 2002 Jan;39(1–2):111–7.

    PubMed  CAS  Google Scholar 

  73. Sironen R, Elo M, Kaarniranta K, Helminen HJ, Lammi MJ. Transcriptional activation in chondrocytes submitted to hydrostatic pressure. Biorheology. 2000 Jan;37(1–2):85–93.

    PubMed  CAS  Google Scholar 

  74. Kaarniranta K, Elo M, Sironen R, Lammi MJ, Goldring MB, Eriksson JE, et al. Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2319–24.

    Article  PubMed  CAS  Google Scholar 

  75. Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, et al. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res. 1996 Jan;14(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  76. Smith RL, Lin J, Trindade MC, Shida J, Kajiyama G, Vu T, et al. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dev. 2000;37(2):153–61.

    PubMed  CAS  Google Scholar 

  77. Mizuno S, Tateishi T, Ushida T, Glowacki J. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol. 2002 Dec;193(3):319–27.

    Article  PubMed  CAS  Google Scholar 

  78. Brand RA. Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop. J. 2005 Jan;25:82–94.

    Google Scholar 

  79. Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthritis Cartilage. 2010 Jul;18(7):909–16.

    Article  PubMed  CAS  Google Scholar 

  80. Connelly JT, Vanderploeg EJ, Levenston ME. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology. 2004 Jan;41(3–4):377–87.

    PubMed  CAS  Google Scholar 

  81. De Witt MT, Handley CJ, Oakes BW, Lowther DA. In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connect Tissue Res. 1984 Jan;12(2):97–109.

    Article  PubMed  CAS  Google Scholar 

  82. Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum. 2000 Sep;43(9):2091–9.

    Article  PubMed  CAS  Google Scholar 

  83. Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Tanaka S. Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. J Lab Clin Med. 1997 Aug;130(2):209–15.

    Article  PubMed  CAS  Google Scholar 

  84. Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, et al. Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res. 1997 Oct;15(5):742–7.

    Article  PubMed  CAS  Google Scholar 

  85. Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res. 2011 Oct;469(10):2764–72.

    Article  PubMed  Google Scholar 

  86. Fan JCY, Waldman SD. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann Biomed Eng. 2010 Apr;38(4):1672–82.

    Article  PubMed  Google Scholar 

  87. Li KW, Williamson AK, Wang AS, Sah RL. Growth responses of cartilage to static and dynamic compression. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S34–48.

  88. Nugent GE, Schmidt TA, Schumacher BL, Voegtline MS, Bae WC, Jadin KD, et al. Static and dynamic compression regulate cartilage metabolism of PRoteoGlycan 4 (PRG4). Biorheology. 2006 Jan;43(3–4):191–200.

    PubMed  CAS  Google Scholar 

  89. Park S, Hung CT, Ateshian GA. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage. 2004 Jan;12(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  90. Pelaez D, Huang C-YC, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev. 2009;18(1):93–102.

    Article  PubMed  CAS  Google Scholar 

  91. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007 Mar;25(3):655–63.

    Article  PubMed  CAS  Google Scholar 

  92. Kopesky PW, Lee H-Y, Vanderploeg EJ, Kisiday JD, Frisbie DD, Plaas AHK, et al. Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol. 2010 Jul;29(5):427–38.

    Article  PubMed  CAS  Google Scholar 

  93. Terraciano V, Hwang N, Moroni L, Park H B, Zhang Z, Mizrahi J, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells. 2007 Dec;25(11):2730–8.

    Article  PubMed  CAS  Google Scholar 

  94. Campbell JJ, Lee DA, Bader DL. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology. 2006 Jan;43(3–4):455–70.

    PubMed  Google Scholar 

  95. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995 May;108(Pt 4):1497–508.

    PubMed  CAS  Google Scholar 

  96. Chowdhury TT, Bader DL, Shelton JC, Lee DA. Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch Biochem Biophys. 2003 Oct 1;417(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  97. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000 Jul;122(3):252–60.

    Article  PubMed  CAS  Google Scholar 

  98. Mauck RL, Wang CC-B, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage. 2003 Dec;11(12):879–90.

    Article  PubMed  CAS  Google Scholar 

  99. Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G, Emmanual J. Composition of cell-polymer cartilage implants. Biotechnol Bioeng. 1994 Mar 25;43(7):605–14.

    Article  PubMed  CAS  Google Scholar 

  100. Brown AN, Kim BS, Alsberg E, Mooney DJ. Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs. Tissue Eng. 2000 Aug;6(4):297–305.

    Article  PubMed  CAS  Google Scholar 

  101. Stading M, Langer R. Mechanical shear properties of cell-polymer cartilage constructs. Tissue Eng. 1999 Jun;5(3):241–50.

    Article  PubMed  CAS  Google Scholar 

  102. Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. BioMaterials. 1996 May;17(9):879–88.

    Article  PubMed  CAS  Google Scholar 

  103. Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol Bioeng. 1994 Mar 25;43(7):597–604.

    Article  PubMed  CAS  Google Scholar 

  104. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999 Jan;17(1):130–8.

    Article  PubMed  CAS  Google Scholar 

  105. Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integration of engineered cartilage. J Orthop Res. 2001 Nov;19(6):1089–97.

    Article  PubMed  CAS  Google Scholar 

  106. Frank EH, Jin M, Loening AM, Levenston ME, Grodzinsky AJ. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J Biomech. 2000 Nov;33(11):1523–7.

    Article  PubMed  CAS  Google Scholar 

  107. Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001 Nov 1;395(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  108. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003 Jul;21(4):590–6.

    Article  PubMed  CAS  Google Scholar 

  109. Galban CJ, Locke BR. Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol Bioeng. 1999 Sep 20;64(6):633–43.

    Article  PubMed  CAS  Google Scholar 

  110. Grimshaw MJ, Mason RM. Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage. 2000 Sep;8(5):386–92.

    Article  PubMed  CAS  Google Scholar 

  111. Sengers BG, Heywood HK, Lee DA, Oomens CWJ, Bader DL. Nutrient utilization by bovine articular chondrocytes: a combined experimental and theoretical approach. J Biomech Eng. 2005 Oct;127(5):758–66.

    Article  PubMed  Google Scholar 

  112. Schulz RM, Wüstneck N, Van Donkelaar CC, Shelton JC, Bader A. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Biotechnol Bioeng. 2008 Nov 1;101(4):714–28.

    Article  PubMed  CAS  Google Scholar 

  113. Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, et al. Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. BioMaterials. 2010 Dec;31(34):8946–52.

    Article  PubMed  CAS  Google Scholar 

  114. Wendt D, Stroebel S, Jakob M, John GT, Martin I. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology. 2006 Jan;43(3–4):481–8.

    PubMed  CAS  Google Scholar 

  115. Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater. 2007 Jan;13(613):73–4.; discussion

    Google Scholar 

  116. Wimmer MA, Grad S, Kaup T, Hänni M, Schneider E, Gogolewski S, et al. Tribology approach to the engineering and study of articular cartilage. Tissue Eng. 2004;10(9–10):1436–45.

    PubMed  CAS  Google Scholar 

  117. Wimmer M, Alini M, Grad S. The effect of sliding velocity on chondrocytes activity in 3D scaffolds. J Biomech. 2009 Mar 11;42(4):424–9.

    Article  PubMed  Google Scholar 

  118. Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv. 2012 Nov 19;Epub ahead of print.

  119. Deng T, Lv J, Pang J, Liu B, Ke J. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. 2012 Jul 9;ahead of print.

  120. Van de Breevaart Bravenboer J, In der Maur CD, Bos PK, Feenstra L, Verhaar JAN, Weinans H, et al. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Ther. 2004 Jan;6(5):R469–76.

    Article  PubMed  CAS  Google Scholar 

  121. Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 2008 Jan;16:26–39.

    PubMed  CAS  Google Scholar 

  122. Allon AA, Ng KW, Hammoud S, Russell BH, Jones CM, Rivera JJ, et al. Augmenting the articular cartilage-implant interface: Functionalizing with a collagen adhesion protein. J Biomed Mater Res A. 2012 Aug;100(8):2168–75.

    PubMed  Google Scholar 

  123. Gilbert SJ, Singhrao SK, Khan IM, Gonzalez LG, Thomson BM, Burdon D, et al. Enhanced tissue integration during cartilage repair in vitro can be achieved by inhibiting chondrocyte death at the wound edge. Tissue Eng Part A. 2009 Jul;15(7):1739–49.

    Article  PubMed  CAS  Google Scholar 

  124. Tew S, Redman S, Kwan A, Walker E, Khan I, Dowthwaite G, et al. Differences in repair responses between immature and mature cartilage. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S142–52.

  125. Qiu W, Murray MM, Shortkroff S, Lee CR, Martin SD, Spector M. Outgrowth of chondrocytes from human articular cartilage explants and expression of alpha-smooth muscle actin. Wound Repair Regen. 2000;8(5):383–91.

    Article  PubMed  CAS  Google Scholar 

  126. Bos PK, DeGroot J, Budde M, Verhaar JAN, Van Osch GJVM. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum. 2002 Apr;46(4):976–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Teuschl PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teuschl, A.H., Nürnberger, S., Redl, H. et al. Articular cartilage tissue regeneration—current research strategies and outlook for the future. Eur Surg 45, 142–153 (2013). https://doi.org/10.1007/s10353-013-0217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-013-0217-9

Keywords

Navigation