Skip to main content

Advertisement

Log in

Tissue engineering in thoracic surgery

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

Adequate reconstruction after extensive resection of the trachea, the chest wall, or the diaphragm represents a considerable challenge for the confronted thoracic surgeon. Therefore, different materials and surgical techniques have been tested; the results were not always satisfying. Increasing evidence exists that tissue engineering can be used to replace damaged tissues and organs such as the trachea, the lungs, the chest wall, and the diaphragm.

Methods

This review focuses on the current progress in tissue engineering in general thoracic surgery, illustrating the existing options in particular for tracheal reconstruction. Furthermore, a detailed overview concerning the different options of tissue engineering in the replacement of the lung, the chest cavity, the diaphragm, and the chest wall is given.

Results

Considerable progress could be yielded in the development of a tissue-engineered tracheal graft, where the step from the animal model into the clinical application in the human patient was feasible. Regarding tissue engineering of the chest wall, the diaphragm, and the chest cavity encouraging preliminary results were obtained in the preclinical testing. However, the step into the clinical application could not be reached up till now.

Conclusions

Tissue engineering seems to represent an appropriate future option for reconstruction after extensive resection of the trachea, the chest wall, or the diaphragm. Although tissue engineering is still not reality and therefore far away from daily clinical routine, further studies are definitely warranted enabling continuous improvements as soon as possible, particularly in thoracic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  PubMed  CAS  Google Scholar 

  2. Kanki-Horimoto S, Horimoto H, Mieno S, et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation. 2006;114(1 Suppl):I181–5.

    PubMed  Google Scholar 

  3. Jungebluth P, Moll G, Baiguera S, et al. Tissue-engineered airway: a regenerative solution. Clin Pharmacol Ther. 2012;91(1):81–93.

    Article  PubMed  CAS  Google Scholar 

  4. Jungebluth P, Macchiarini P. Stem cell-based therapy and regenerative approaches to diseases of the respiratory system. Br Med Bull. 2011;99:169–87.

    Article  PubMed  CAS  Google Scholar 

  5. Molnar TF, Pongracz JE. Tissue engineering and biotechnology in general thoracic surgery. Eur J Cardiothorac Surg. 2010;37(6):1402–10.

    Article  PubMed  Google Scholar 

  6. Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue-engineered transplantation approach. J Cell Mol Med. 2010;14(7):1877–89.

    Article  PubMed  CAS  Google Scholar 

  7. Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg. 2002;73(6):1995–2004.

    Article  PubMed  Google Scholar 

  8. Belsey R. Resection and reconstruction of the intrathoracic trachea. Br J Surg. 1950;38(150):200–5.

    Article  PubMed  CAS  Google Scholar 

  9. Yamashita M, Kanemaru S, Hirano S, et al. Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope. 2007;117(3):497–502.

    Article  PubMed  Google Scholar 

  10. Walles T, Giere B, Hofmann M, et al. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg. 2004;128(6):900–6.

    PubMed  Google Scholar 

  11. Soleas JP, Paz A, Marcus P, et al. Engineering airway epithelium. J Biomed Biotechnol. 2012;2012:982971.

    Article  PubMed  Google Scholar 

  12. Elliott MJ, Haw MP, Jacobs JP, et al. Tracheal reconstruction in children using cadaveric homograft trachea. Eur J Cardiothorac Surg. 1996;10(9):707–12.

    Article  PubMed  CAS  Google Scholar 

  13. Macchiarini P, Walles T, Biancosino, C et al. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 2004;128(4):638–41.

    Article  PubMed  Google Scholar 

  14. Omori K, Nakamura T, Kanemaru, S et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005;114(6):429–33.

    PubMed  Google Scholar 

  15. Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  PubMed  Google Scholar 

  16. Baiguera S, Jungebluth P, Burns A, et al. Tissue-engineered human tracheas for in vivo implantation. Biomaterials. 2010;31(34):8931–8.

    Article  PubMed  CAS  Google Scholar 

  17. Delaere P, Vranckx J, Verleden G, et al. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 2010 362:138–45.

    Article  PubMed  CAS  Google Scholar 

  18. Baiguera S, Del Gaudio C, Jaus MO, et al. Long-term changes to in vitro preserved bioengineered human trachea and their implications for decellularized tissues. Biomaterials. 2012;33(14):3662–72.

    Article  PubMed  CAS  Google Scholar 

  19. Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis. 2012 Sep 26. (Epub ahead of print)

  20. Tan Q, Steiner R, Hoerstrup SP, et al. Tissue-engineered trachea: History, problems and the future. Eur J Cardiothorac Surg. 2006;30(5):782–6.

    Article  PubMed  Google Scholar 

  21. Walles T. Tracheobronchial bio-engineering: biotechnology fulfilling unmet medical needs. Adv Drug Deliv Rev. 2011;63(4–5):367–74.

    Article  PubMed  CAS  Google Scholar 

  22. Kalathur M, Baiguera S, Macchiarini P. Translating tissue-engineered tracheal replacement from bench to bedside. Cell Mol Life Sci. 2010;67(24):4185–96.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura T, Ohmori K, Kanemaru S. Tissue-engineered airway and “in situ tissue engineering”. Gen Thorac Cardiovasc Surg. 2011;59(2):91–7.

    Article  PubMed  Google Scholar 

  24. Baiguera S, Jungebluth P, Mazzanti B et al. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int. 2012;25(4):369–82.

    Article  PubMed  CAS  Google Scholar 

  25. Fishman JM, De Coppi P, Elliott MJ et al. Airway tissue engineering. Expert Opin Biol Ther. 2011;11(12):1623–35.

    Article  PubMed  CAS  Google Scholar 

  26. Baiguera S, D’Innocenzo B, Macchiarini P. Current status of regenerative replacement of the airway. Expert Rev Respir Med. 2011;5(4):487–94.

    Article  PubMed  Google Scholar 

  27. Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue-engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.

    Article  PubMed  Google Scholar 

  28. Nichols JE, Cortiella J. Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc. 2008;5(6):723–30.

    Article  PubMed  Google Scholar 

  29. Nichols JE, Niles JA, Cortiella J. Design and development of tissue-engineered lung: progress and challenges. Organogenesis. 2009;5(2):57–61.

    Article  PubMed  Google Scholar 

  30. Nichols JE, Niles JA, Cortiella J. Production and utilization of acellular lung scaffolds in tissue engineering. J Cell Biochem. 2012;113(7):2185–92.

    Article  PubMed  CAS  Google Scholar 

  31. Misaki N, Yamamoto Y, Okamoto T, et al. Intra-thoracic fibrous tissue induction by polylactic acid and epsilon-caprolactone copolymer cubes, with or without slow release of basic fibroblast growth factor. Eur J Cardiothorac Surg. 2007;32(5):761–5.

    Article  PubMed  Google Scholar 

  32. Molnar TF. Current surgical treatment of thoracic empyema in adults. Eur J Cardiothorac Surg. 2007;32(3):422–30.

    Article  PubMed  Google Scholar 

  33. Tsunooka N, Hirayama S, Medin JA, et al. A novel tissue-engineered approach to problems of the postpneumonectomy space. Ann Thorac Surg. 2011;91(3):880–6.

    Article  PubMed  Google Scholar 

  34. Gasior AC, St Peter SD. A review of patch options in the repair of congenital diaphragm defects. Pediatr Surg Int. 2012;28(4):327–33.

    Article  PubMed  Google Scholar 

  35. Fauza DO, Marler JJ, Koka R, et al. Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg. 2001;36(1):146–51.

    Article  PubMed  CAS  Google Scholar 

  36. Fuchs JR, Kaviani A, Oh JT, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8.

    Article  PubMed  Google Scholar 

  37. Kunisaki SM, Fuchs JR, Kaviani, A et al. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg. 2006;41(1):34–9.

    Article  PubMed  Google Scholar 

  38. Turner CG, Klein JD, Steigman SA, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46(1):57–61.

    Article  PubMed  Google Scholar 

  39. Rocco G, Fazioli F, Scognamiglio, F et al. The combination of multiple materials in the creation of an artificial anterior chest cage after extensive demolition for recurrent chondrosarcoma. J Thorac Cardiovasc Surg. 2007;133(4):1112–4.

    Article  PubMed  Google Scholar 

  40. Tang H, Xu Z, Qin X, et al. Chest wall reconstruction in a canine model using polydioxanone mesh, demineralized bone matrix and bone marrow stromal cells. Biomaterials. 2009;30(19):3224–33.

    Article  PubMed  CAS  Google Scholar 

  41. Rocco G, Mori S, Fazioli F, et al. The use of biomaterials for chest wall reconstruction 30 years after radical surgery and radiation. Ann Thorac Surg. 2012;94(4):109–10.

    Article  Google Scholar 

  42. Rocco G, Serra L, Fazioli F, et al. The use of veritas collagen matrix to reconstruct the posterior chest wall after costovertebrectomy. Ann Thorac Surg. 2011;92(1):e17–8.

    Article  PubMed  Google Scholar 

  43. Gilbert TW, Nieponice A, Spievack, AR et al. Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. J Surg Res. 2008;147(1):61–7.

    Article  PubMed  CAS  Google Scholar 

  44. Smith MD, Campbell RM. Use of a biodegradable patch for reconstruction of large thoracic cage defects in growing children. J Pediatr Surg. 2006;41(1):46–9.

    Article  PubMed  Google Scholar 

  45. Klein JD, Turner CG, Ahmed, A et al. Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg. 2010;45(6):1354–60.

    Article  PubMed  Google Scholar 

  46. Steigman SA, Ahmed A, Shanti, RM et al. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lindenmann MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindenmann, J. Tissue engineering in thoracic surgery. Eur Surg 45, 161–168 (2013). https://doi.org/10.1007/s10353-013-0209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-013-0209-9

Keywords

Navigation