Skip to main content

Advertisement

Log in

The use of Keratinocytes: Things we should keep in mind!

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

Cultivation of keratinocytes and their clinical application was an essential step towards the development of new treatment concepts for patients suffering from severe burns and chronic cutaneous wounds. The aim of this review is to give a current overview of keratinocyte cultivation and keratinocyte application under experimental and clinical conditions as well as to discuss their limitations, complications and future perspectives.

Methods

Pubmed and Medline was systematically searched for correlative publications.

Results

Promising at first, but over time its limitations became evident: demanding infrastructural requirements, high costs, lack of “ex-vitro” stability, additional requirement for dermal support, and the absence of other skin cell types or appendages have limited the introduction in daily clinical routine. Nonetheless, continuous efforts have been made in the past decades in order to improve the application of keratinocytes. Novel techniques of keratinocyte harvest and cultivation have simplified the clinical application, improved stability, and consequent outcomes.

Conclusions

The herein presented efforts despite their drawbacks during the development process and resultant clinical outcomes of keratinocyte culturing bear a solid foundation for the future. The ultimate challenge however remains, bringing any of these efforts into clinical practice while avoiding the failures of the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kamolz LP, Lumenta DB, Kitzinger HB, Frey M. Tissue engineering for cutaneous wounds: an overview of current standards and possibilities. Eur Surg. 2008;40:19–26.

    Article  Google Scholar 

  2. Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin. The crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4:413–37.

    Article  PubMed  CAS  Google Scholar 

  3. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211:1052–4.

    Article  PubMed  CAS  Google Scholar 

  4. Jensen PKA, Bolund L. Tissue culture of human epidermal keratinocytes: a differentiating model system for gene testing and somatic gene therapy. J Cell Sci. 1991;100:255–9.

    PubMed  Google Scholar 

  5. Anderson BE. The netter collection of medical illustrations: integumentary system, 2nd ed. Philadelphia: Saunders; 2012.

    Google Scholar 

  6. Wong DJ, Chang HY. Skin tissue engineering, ed The Stem Cell Research Community StemBook; 2009.

  7. Abdel-Naser MB, Abdallah M, Almeida HLD Jr., Wollina U. Human skin cell culture and its impact on dermatology. EDOJ. 2005;1(2):1–25.

    Google Scholar 

  8. Pomahac B, Svensjo T, Yao F, Brown H, Eriksson E. Tissue engineering of skin. Crit Rev Oral Biol Med. 1998;9:333–44.

    Article  PubMed  CAS  Google Scholar 

  9. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes. The formation of keratinizing colonies from single cells. Cell. 1975;6:331–43.

    Article  PubMed  CAS  Google Scholar 

  10. Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977;265:421–4.

    Article  PubMed  CAS  Google Scholar 

  11. Clugston PA, Snelling CF, Macdonald IB, Maledy HL, Boyle JC, Germann E, Courtemanche AD, Wirtz P, Fitzpatrick DJ, Kester DA, et al. Cultured epithelial autografts: three years of clinical experience with eighteen patients. J Burn Care Rehabil. 1991;12:533-9.

    Article  PubMed  CAS  Google Scholar 

  12. Gallico GG, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311:48–451.

    Article  Google Scholar 

  13. O’Connor NE. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1:75–8.

    Google Scholar 

  14. Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet. 1986;1:1123–4.

    Article  PubMed  CAS  Google Scholar 

  15. Heimbach DM. A nonuser’s questions about cultured epidermal autograft. J Burn Care Rehabil. 1992;13:127–9.

    Article  PubMed  CAS  Google Scholar 

  16. Burke JF, Yannas IV, Quinby WC, Jr., Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194:413–28.

    Article  PubMed  CAS  Google Scholar 

  17. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg. 1995;222:743–52.

    Article  PubMed  CAS  Google Scholar 

  18. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23:403–12.

    Article  PubMed  Google Scholar 

  19. Lootens L, Brusselaers N, Beele H, Monstrey S. Keratinocytes in the treatment of severe burn injury: an update. Int Wound J. 2013;10:6–12.

    Google Scholar 

  20. Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J, Lambert F, Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000;26:379–87.

    Article  PubMed  CAS  Google Scholar 

  21. Herndon D. Total burn care, 3rd ed. Philadelphia: Saunders Elsevier press; 2007.

    Google Scholar 

  22. Maas-Szabowski N, Shimotoyodome A, Fusenig NE. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci. 1999;112 (Pt 12):1843–53.

    PubMed  Google Scholar 

  23. Limat A, Hunziker T, Boillat C, Bayreuther K, Noser F. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J Invest Dermatol. 1989;92:758–62.

    Article  PubMed  CAS  Google Scholar 

  24. Panacchia L, Dellambra E, Bondanza S, Paterna P, Maurelli R, Paionni E, Guerra L. Nonirradiated human fibroblasts and irradiated 3t3-j2 murine fibroblasts as a feeder layer for keratinocyte growth and differentiation in vitro on a fibrin substrate. Cells Tissues Organs. 2010;191:21–35.

    Article  PubMed  Google Scholar 

  25. Harris PA, Leigh IM, Navsaria HA. Pre-confluent keratinocyte grafting: the future for cultured skin replacements? Burns. 1998;24:591–3.

    Article  PubMed  CAS  Google Scholar 

  26. Currie LJ, Martin R, Sharpe JR, James SE. A comparison of keratinocyte cell sprays with and without fibrin glue. Burns. 2003;29:677–85.

    Article  PubMed  Google Scholar 

  27. Fredriksson C, Kratz G, Huss F. Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques. Burns. 2008;34:212–9.

    Article  PubMed  Google Scholar 

  28. Chua A, Song C, Chai A, Chan L, Tan KC. The impact of skin banking and the use of its cadaveric skin allografts for severe burn victims in singapore. Burns. 2004;30:696–700.

    Article  PubMed  Google Scholar 

  29. Hamilton KT, Herson MR. Skin bank development and critical incident response. Cell Tissue Bank 2010;12:147-151.

    Article  PubMed  Google Scholar 

  30. Pianigiani E, Ierardi F, Cherubini Di Simplicio F, Andreassi A. Skin bank organization. Clin Dermatol. 2005;23:3–356.

    Google Scholar 

  31. Limat A, Mauri D, Hunziker T. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells. J Invest Dermatol. 1996;107:128–35.

    Article  PubMed  CAS  Google Scholar 

  32. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339–73.

    Article  PubMed  CAS  Google Scholar 

  33. Limat A, Hunziker T. Use of epidermal equivalents generated from follicular outer root sheath cells in vitro and for autologous grafting of chronic wounds. Cells Tissues Organs. 2002;172:79–85.

    Article  PubMed  Google Scholar 

  34. Tausche AK, Skaria M, Bohlen L, Liebold K, Hafner J, Friedlein H, Meurer M, Goedkoop RJ, Wollina U, Salomon D, Hunziker T. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen. 2003;11:248–52.

    Article  PubMed  Google Scholar 

  35. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445:874–80.

    Article  PubMed  CAS  Google Scholar 

  36. Rippon HJ, Bishop AE. Embryonic stem cells. Cell Prolif. 2004;37:23–34.

    Article  PubMed  CAS  Google Scholar 

  37. Fujita Y, Inokuma D, Abe R, Sasaki M, Nakamura H, Shimizu T, Shimizu H. Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors. Clin Exp Dermatol. 2012;37:658–64.

    Article  PubMed  CAS  Google Scholar 

  38. Lee SH, Lee JH, Cho KH. Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol. 2011;23:150–5.

    Article  PubMed  Google Scholar 

  39. Vatansever HS, Uluer ET, Aydede H, Ozbilgin MK. Analysis of transferred keratinocyte-like cells derived from mouse embryonic stem cells on experimental surgical skin wounds of mouse. Acta Histochem. 2013;115:32–41.

    Google Scholar 

  40. Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol. 2006;44:215–30.

    PubMed  CAS  Google Scholar 

  41. Zografou A, Tsigris C, Papadopoulos O, Kavantzas N, Patsouris E, Donta I, Perrea D. Improvement of skin-graft survival after autologous transplantation of adipose-derived stem cells in rats. J Plast Reconstr Aesthet Surg. 2011;64:1647–56.

    Article  PubMed  CAS  Google Scholar 

  42. Brittan M, Braun KM, Reynolds LE, Conti FJ, Reynolds AR, Poulsom R, Alison MR, Wright NA, Hodivala-Dilke KM. Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J Pathol. 2005;205:1–13.

    Article  PubMed  Google Scholar 

  43. Wu Y, Zhao RC, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010;28:905–15.

    PubMed  CAS  Google Scholar 

  44. Kamolz LP, Kolbus A, Wick N, Mazal PR, Eisenbock B, Burjak S, Meissl G. Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns. 2006;32:16–19.

    Article  PubMed  Google Scholar 

  45. Burd A, Ahmed K, Lam S, Ayyappan T, Huang L. Stem cell strategies in burns care. Burns. 2007;33:282–91.

    Article  PubMed  CAS  Google Scholar 

  46. James SE, Booth S, Dheansa B, Mann DJ, Reid MJ, Shevchenko RV, Gilbert PM. Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-to-heal burns patients. Burns. 2010;36:e10–20.

    Article  PubMed  Google Scholar 

  47. Kopp J, Jeschke MG, Bach AD, Kneser U, Horch RE. Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix. Cell Tissue Bank. 2004;5:89–96.

    Article  PubMed  CAS  Google Scholar 

  48. Hernon CA, Dawson RA, Freedlander E, Short R, Haddow DB, Brotherston M, MacNeil S. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med. 2006;1:809–21.

    Article  PubMed  Google Scholar 

  49. Munster AM. Cultured skin for massive burns. A prospective, controlled trial. Ann Surg. 1996;224:372–5; discussion 375–7.

    Article  PubMed  CAS  Google Scholar 

  50. Ichioka S, Kouraba S, Sekiya N, Ohura N, Nakatsuka T. Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience. Br J Plast Surg. 2005;58:1124–30.

    Article  PubMed  Google Scholar 

  51. Jin G, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011;7:3113–22.

    Article  PubMed  CAS  Google Scholar 

  52. Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, Veran J, Magalon G, Casanova D. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38:820–9.

    Article  PubMed  Google Scholar 

  53. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70:1588–98.

    Article  PubMed  CAS  Google Scholar 

  54. Truong AT, Kowal-Vern A, Latenser BA, Wiley DE, Walter RJ. Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns Wounds. 2005;4:e4.

    PubMed  Google Scholar 

  55. Chester DL, Balderson DS, Papini RP. A review of keratinocyte delivery to the wound bed. J Burn Care Rehabil. 2004;25:266–75.

    Article  PubMed  CAS  Google Scholar 

  56. Paddle-Ledinek JE, Cruickshank DG, Masterton JP. Skin replacement by cultured keratinocyte grafts: an Australian experience. Burns. 1997;23:204–11.

    Article  PubMed  CAS  Google Scholar 

  57. Wood FM, Giles N, Stevenson A, Rea S, Fear M. Characterisation of the cell suspension harvested from the dermal epidermal junction using a recell(r) kit. Burns 2012;38:44–51.

    Article  PubMed  Google Scholar 

  58. Eves PC, Beck AJ, Shard AG, Mac Neil S. A chemically defined surface for the co-culture of melanocytes and keratinocytes. Biomaterials. 2005;26:7068–81.

    Article  PubMed  CAS  Google Scholar 

  59. Theopold C, Hoeller D, Velander P, Demling R, Eriksson E. Graft site malignancy following treatment of full-thickness burn with cultured epidermal autograft. Plast Reconstr Surg. 2004;114:1215–9.

    PubMed  Google Scholar 

  60. Auxenfans C, Fradette J, Lequeux C, Germain L, Kinikoglu B, Bechetoille N, Braye F, Auger FA, Damour O. Evolution of three dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol. 2009;19:107–13.

    PubMed  Google Scholar 

  61. Kim JY, Park CD, Lee JH, Lee CH, Do BR, Lee AY. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes. Acta Derm Venereol. 2011;92:16–23.

    Google Scholar 

  62. Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim. 1999;35:318–26.

    Article  PubMed  CAS  Google Scholar 

  63. Lugo LM, Lei P, Andreadis ST. Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Eng Part A 2011;17:665–75.

    Article  PubMed  CAS  Google Scholar 

  64. Vermette M, Trottier V, Menard V, Saint-Pierre L, Roy A, Fradette J. Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials. 2007;28:2850–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no financial or personal conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Kamolz MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddam, A., Kamolz, L., Weninger, W. et al. The use of Keratinocytes: Things we should keep in mind!. Eur Surg 45, 154–160 (2013). https://doi.org/10.1007/s10353-013-0204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-013-0204-1

Keywords

Navigation