Skip to main content

Advertisement

Log in

Tissue Engineering Generation of adipose tissue: an overview of current standards and possibilities

Herstellung von Fettgewebe mittels Tissue Engineering: Überblick zum aktuellen Stand und neue Möglichkeiten

  • Review
  • Published:
European Surgery Aims and scope Submit manuscript

Zusammenfassung

GRUNDLAGEN: Die Forschung auf dem Gebiet des Tissue Engineerings hat sich im Laufe der letzten Jahre rasch entwickelt und bietet alternative Strategien für die Fettgewebsaugmentation an, die den traditionellen chirurgischen Verfahren überlegen sein könnte. METHODIK: Dieser Übersichtsartikel soll einen Überblick zum Thema Tissue Engineering liefern und die aktuellen Forschungsergebnisse zu diesem Thema durchleuchten. ERGEBNISSE: Der Grundsatz dieser neuen Verfahren basiert entweder darauf lebende Zellen eines Organismus außerhalb des Zielgewebes zu kultivieren und anschließend zu implantieren (in vitro Tissue engineering) oder eine Matrix in den Organismus einzubringen, um eine Geweberegeneration zu veranlassen (in vivo Tissue Engineering) und die richtige Funktion des Gewebes wieder herzustellen. Es gibt zahlreiche verschiedene Verfahren, die verfügbar sind, um Fettgewebe zu generieren. SCHLUSSFOLGERUNGEN: Langfristig werden wahrscheinlich konventionelle reparative Verfahren durch regenerative Verfahren abgelöst.

Summary

BACKGROUND: Research in tissue engineering has developed rapidly over the last years and offers alternative strategies for soft tissue augmentation, which might be superior to traditional surgical options. METHODS: This review article gives an outline of the basics of tissue engineering and reviews the latest research in this field. RESULTS: The principle of this new approach is either to cultivate living cells of an organism outside of the target tissue to finally implant them to the same organism (in vitro tissue engineering) or to insert a matrix into an organism to induce the generation of tissue and to restore the proper function of the tissue (in vivo tissue engineering). There are numerous different approaches available to generate adipose tissue. CONCLUSIONS: The conventional reparative approach will be replaced by a regenerative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • 2009 American Society of Plastic Surgeons Statistics. Available from: www.plasticsurgery.org

  • Hurvitz KA, Kobayashi M, Evans GR. Current options in head and neck reconstruction. Plast Reconstr Surg 2006;118: 122e–33e

    Article  PubMed  Google Scholar 

  • Riedel F, Reinhart Goessler U, et al. Management of radiation-induced tracheocutaneous tissue defects by transplantation of an ear cartilage graft and deltopectoral flap. Auris Nasus Laryn 2006;33(1):79–84

    Article  Google Scholar 

  • Riedel F, Goessler UR, Stern-Straeter J, Riedel K, Hörmann K. Regenerative medicine in head and neck reconstructive surgery. HNO 2008 Mar;56(3):262–74

    Article  CAS  PubMed  Google Scholar 

  • Shenaq SM, Yuksel E. New research in breast reconstruction: adipose tissue engineering. Clin Plast Surg 2002;29(1):111–25

    Article  PubMed  Google Scholar 

  • Boschert MT, Beckert BW, Puckett ChL, Concannon MJ. Analysis of lipocyte viability after liposuction. Plast Reconstr Surg 2002;109:761–5

    Article  PubMed  Google Scholar 

  • Kaufman MR, Bradley JP, Dickinson B, et al. Autologous fat transfer national consensus survey: trends in techniques for harvest, preparation, and application, and perception of short- and long-term results. Plast Reconstr Surg 2007 Jan;119(1): 323–31

    Article  CAS  PubMed  Google Scholar 

  • Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 2001 Sep;27(9):819–26

    CAS  PubMed  Google Scholar 

  • Smith P, Adams WP, Lipschitz AH, et al. Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 2006;117(6):1836–44

    Article  CAS  PubMed  Google Scholar 

  • Keck M, Janke J, Ueberreiter K. The influence of different local anaesthetics on the viability of preadipocytes. Handchir Mikrochir Plast Chir 2007 Jun;39(3):215–9

    Article  CAS  PubMed  Google Scholar 

  • Herold C, Ueberreiter K, Cromme F, Busche MN, Vogt PM. MRT-Volumetrie der Mamma zur Kontrolle der Fettresorptionsrate nach autologem Lipotransfer. Handchir Mikrochir Plast Chir 2010 Apr;42(2):129–34

    Article  CAS  PubMed  Google Scholar 

  • EU Tissue Directive 2004/23/EG

  • Junqueira LC, Carneiro J, Gratzl M. Fettgewebe In: Gratzl M. (Hrsg) Histologie. Berlin, Heidelberg: Springer; 2005;S:75–80

    Chapter  Google Scholar 

  • Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci 2009 Sep;54(9):1847–56

    Article  PubMed  Google Scholar 

  • De Ugarte DA, Ashjian PH, Elbarbary A, Hedrick MH. Future of fat as raw material for tissue regeneration. Ann Plast Surg 2003;50(2):215–9

    Article  PubMed  Google Scholar 

  • Patrick CW, Mikos AG, McIntire LV. Frontiers in tissue engineering. 1st ed. Oxford, UK and New York: Pergamon; 1998

    Google Scholar 

  • Patrick Jr CW. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin Surg Oncol 2000;19(3):302–11

    Article  PubMed  Google Scholar 

  • Beahm EK, Walton RL, Patrick Jr CW. Progress in adipose tissue construct development. Clin Plast Surg 2003;30(4):547–58

    Article  PubMed  Google Scholar 

  • Patrick Jr CW. Tissue-engineering strategies for adipose tissue repair. Anat Rec 2001;263(4):361–6

    Article  CAS  PubMed  Google Scholar 

  • Alhadlaq A, Tang M, Mao JJ. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng 2005;11(3–4):556–66

    Article  CAS  PubMed  Google Scholar 

  • Fischbach C, Spruss T, Weiser B, et al. Generation of mature fat pads in vitro and in vivo utilizing 3-D long-term culture of 3T3-L1 preadipocytes. Exp Cell Res 2004; 300(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • Kral JG, Crandall DL. Development of a human adipocyte synthetic polymer scaffold. Plast Reconstr Surg 1999;104(6):1732–8

    Article  CAS  PubMed  Google Scholar 

  • Gentleman E, Nauman EA, Livesay GA, Dee KC. Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng 2006;12(6): 1639–49

    Article  CAS  PubMed  Google Scholar 

  • Halbleib M, Skurk T, de Luca C, von Heimburg D, Hauner H. Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials 2003;24(18): 3125–32

    Article  CAS  PubMed  Google Scholar 

  • Burg KJ, Holder WD, Culberson CR, et al. Parameters affecting cellular adhesion to polylactide films. J Biomater Sci Polym Ed 1999;10(2):147–61

    Article  CAS  PubMed  Google Scholar 

  • Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 2001;72(2):577–91

    Article  CAS  PubMed  Google Scholar 

  • Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 2000;21(19):1921–7

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt C, Austin C, Rowley J, et al. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng 2002;8(2):309–19

    Article  CAS  PubMed  Google Scholar 

  • Patel PN, Gobin AS, West JL, Patrick Jr CW. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 2005;11(9–10):1498–505

    Article  CAS  PubMed  Google Scholar 

  • Butterwith SC. Molecular events in adipocyte development. Pharmacol Ther 1994;61(3):399–411

    Article  CAS  PubMed  Google Scholar 

  • ensp;Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Ann Rev Nutr 1994;14:99–129

    Article  CAS  Google Scholar 

  • Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 2005;26(34): 7025–37

    Article  CAS  PubMed  Google Scholar 

  • von Heimburg D, Serov G, Oepen T, Pallua N. Fat tissue engineering. In: Ashammakhi N, Ferretti P, editors. Topics in Tissue Engineering. Oulo, BTE, pp 1–16, 2003

    Google Scholar 

  • von Heimburg D, Kuberka M, Rendchen R, Hemmrich K, Rau G, Pallua N. Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int J Artif Organs 2003;26(12):1064–76

    CAS  PubMed  Google Scholar 

  • Cavin AN, Ellis SE, Burg KJL. Adipocyte Response to injectable breast tissue engineering scaffolds. In: Transactions of the 30th annual meeting of the Society for Biomaterials, Memphis, TN. 2005

  • Burg KJ, Boland T. Minimally invasive tissue engineering composites and cell printing. IEEE Eng Med Biol Mag 2003;22(5): 84–91

    Article  PubMed  Google Scholar 

  • Masuda T, Furue M, Matsuda T. Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng 2004;10(11–12):1672–83

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci USA 1998;95(3):1062–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Ozeki M, Inamoto T, Tabata Y. Time course of de novo adipogenesis in matrigel by gelatin microspheres incorporating basic fibroblast growth factor. Tissue Eng 2002;8(4):603–13

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y, Miyao M, Inamoto T, et al. De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng 2000;6(3):279–89

    Article  CAS  PubMed  Google Scholar 

  • Toriyama K, Kawaguchi N, Kitoh J, et al. Endogenous adipocyte precursor cells for regenerative soft-tissue engineering. Tissue Eng 2002;8(1):157–65

    Article  CAS  PubMed  Google Scholar 

  • Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg 1989 Feb;83(2):368–81

    Article  PubMed  Google Scholar 

  • Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science 2008 Oct 24;322(5901):583–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 2008 Oct 17;135(2):240–9

    Article  CAS  PubMed  Google Scholar 

  • Keck M, Haluza D, Burjak S, Eisenbock B, Kamolz LP, Frey M. Cultivation of keratinocytes and preadipocytes on a collagen-elastin scaffold (Matriderm®): first results of an in vitro study. Eur Surg 2009;41/4:189–93

    Article  Google Scholar 

  • Coleman SR, Saboeiro A. Fat grafting to the breast revisited: safety and efficacy. Ann Plast Surg 2007;119(3):775–85

    CAS  Google Scholar 

  • Patrick CW Jr, Uthamanthil R, Beahm E, Frye C. Animal models for adipose tissue engineering. Tissue Eng Part B Rev 2008;14(2): 167–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bari C, Dell Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 2004;50:142–50

    Article  CAS  PubMed  Google Scholar 

  • Goessler UR, Hörmann K, Riedel F. Adult stem cells in plastic reconstructive surgery. Int J Mol Med 2005;15:899–905

    CAS  PubMed  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001;3:778–84

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–28

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13(12): 4279–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005;332(2):370–9

    Article  CAS  PubMed  Google Scholar 

  • Choi YS, Park SN, Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 2005;26(29):5855–63

    Article  CAS  PubMed  Google Scholar 

  • Brayfield C, Marra K, Rubin JP. Adipose stem cells for soft tissue regeneration. Handchir Mikrochir Plast Chir 2010 Apr;42(2): 124-8. Epub 2010 Mar 29

    Article  CAS  PubMed  Google Scholar 

  • Rennekampff HO, Reimers K, Gabka CJ, Germann G, Giunta RE, Knobloch K, Machens HG, Pallua N, Ueberreiter K, von Heimburg D, Vogt PM. Möglichkeiten und Grenzen der autologen Fetttransplantation – "Consensus Meeting" der DGPRÄC in Hannover, September 2009. Handchir Mikrochir Plast Chir 2010 Apr;42(2):137–42

    Article  PubMed  Google Scholar 

  • Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 2007;25:818–27

    Article  PubMed  Google Scholar 

  • Fraser JK, Wulur I, Alfonso Z, et al. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotech 2006;24:150–4

    Article  CAS  Google Scholar 

  • Cowan C, Shi Y, Aalami O, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004;22(5):560–7

    Article  CAS  PubMed  Google Scholar 

  • von Heimburg D, Hemmrich K, Haydarlioglu S, Staiger H, Pallua N. Comparison of viable cell yield from excised versus aspirated adipose tissue. Cells Tissues Organs 2004;178(2):87–92

    Article  PubMed  Google Scholar 

  • Rubin JP, Bennett JM, Doctor JS, Tebbets BM, Marra KG. Collagenous microbeads as a scaffold for tissue Engineering with adipose-derived stem cells. Plast Reconstr Surg 2007;120(2): 414–24

    Article  CAS  PubMed  Google Scholar 

  • Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 2008;60(5):538–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Hu Y, Lv R, Li D. Regulation of adipose-derived adult stem cells differentiating into chondrocytes with the use of rhBMP-2. Cytotherapy 2006;8(6):570–9

    Article  CAS  PubMed  Google Scholar 

  • Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 2005;183(1):13–30

    Article  CAS  PubMed  Google Scholar 

  • Tholpady SS, Llull R, Ogle RC, Rubin JP, Futrell JW, Katz AJ. Adipose tissue: stem cells and beyond. Clin Plast Surg 2006; 33(1):55–62

    Article  PubMed  Google Scholar 

  • Martinez-Estrada OM, Munoz-Santos Y, Julve J, et al. Human adipose tissue as a source of Flk-1 + cells: new method of differentiation and expansion. Cardiovasc Res 2005;65:328–33

    Article  CAS  PubMed  Google Scholar 

  • Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109:1292–8

    Article  PubMed  Google Scholar 

  • Amos PJ, Shang H, Bailey AM, et al. IFATS collection: the role of human adipose derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 2008;26:2682–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301–13

    Article  CAS  PubMed  Google Scholar 

  • Gomillion CT, Burg KJL. Stem cells and adipose tissue engineering. Biomaterials 2006;27:6052–63

    Article  CAS  PubMed  Google Scholar 

  • Croissandeau G, Chretien M, Mbikay M. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes. Biochem J 2002;364(Part 3):739–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat. Clin Plast Surg 1999;26(4): 587–603

    CAS  PubMed  Google Scholar 

  • Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem 1997 Feb 28;272(9):5367–70

    Article  CAS  PubMed  Google Scholar 

  • Yuksel E, Weinfeld AB, Cleek R, Waugh JM, Jensen J, Boutros S, et al. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microspheres in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg 2000;105:1721–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-P. Kamolz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keck, M., Kamolz, LP. & Frey, M. Tissue Engineering Generation of adipose tissue: an overview of current standards and possibilities. Eur Surg 42, 164–170 (2010). https://doi.org/10.1007/s10353-010-0548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-010-0548-8

Schlüsselwörter

Keywords

Navigation