Skip to main content

Advertisement

Log in

Is immunotherapy a reasonable approach for the treatment of esophageal cancer?

Immuntherapie beim Ösophagus Karzinom

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Zusammenfassung

GRUNDLAGEN: Die Fortschritte der chirurgischen Techniken und die Anwendung diverser Chemotherapeutika haben zwar die Prognose des Ösophaguskarzinoms in den letzten Jahrzehnten verbessert, jedoch ist das 5 Jahresüberleben noch immer schlecht. Diese Tatsache hat zur Erforschung von neuen Therapieoptionen wie zum Beispiel Immunotherapie geführt. METHODIK: Literaturübersicht und Darstellung eigener Erfahrungen mit Immuntherapie. ERGEBNISSE: In den letzten zwei Jahrzehnten wurden in klinischen Studien die adoptive Immuntherapie unter Verwendung von Tumor-infiltrierenden Lymphozyten oder Lymphokin aktivierten Killerzellen angewendet: Das zunehmende Verständnis über die zentrale Rolle von professio-nellen antigen-präsentierenden Zellen (dendritische Zellen; DCs) in der Regulation des Immunsystems und die Mechanismen, welche die Funktion der beteiligten Effektorzellen kontrollieren öffnet neue Therapieoptionen bei Tumorpatienten. SCHLUSSFOLGERUNGEN: Die Immuntherapie in Kombination mit etablierten Therapiemodalitäten scheint ein möglicher Therapieansatz in der Behandlung des Ösophaguskarzinoms zu sein, der die Prognose zukünftig noch verbessern sollte.

Summary

BACKGROUND: The advances in surgical techniques and the development of new therapeutic agents have improved the prognosis of esophageal cancer in the past decades. However, the 5 year overall survival still remains poor. The bleak prognosis has led to the search for new therapeutic options such as immunotherapy. METHODS: Review of the literature and presentation of institutional experience in immunotherapy. RESULTS: In the past two decades, adoptive immunotherapy based on tumor infiltrating lymphocytes (TILs) or lymphokine activated killer cells (LAK) has been used in clinical trials. The increasing knowledge about the central role of professional antigen presenting cells (Dendritic cells; DCs) in the regulation of the immune system and the mechanism controlling the function of the involved effector cells have provided new possibilities for cancer treatment. CONCLUSIONS: Immunotherapy in combination with established therapeutical modalities is a possible approach for the treatment of esophageal cancer that may in the future further improve the prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ferlay J, Bray F, Pisani P, GLOBOCAN (2000) Cancer Incidence, Mortality and Prevalence Worldwide

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Lotze MAT (1999) Dendritic cells; Biology and Clinical Application

  • Hart DN (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245–3287

    PubMed  CAS  Google Scholar 

  • McCabe ML, Dlamini Z (2005) The molecular mechanisms of oesophageal cancer. Int Immunopharmacol 5: 1113–1130

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Hayashi K, Ota M, Ide H, Takasaki K, Mitsuhashi M (2004) Expression of p21(Waf1/Cip1) predicts response and survival of esophageal cancer patients treated by chemoradiotherapy. Dis Esophagus 17: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Langer R, Von Rahden BH, Nahrig J, Von Weyhern C, Reiter R, Feith M, Stein HJ, Siewert JR, Hofler H, Sarbia M (2006) Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol 59: 631–634

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Noguchi Y, Wada H, Fujita S, Nakamura S, Tanaka R, Nakada T, Hasegawa K, Nakagawa K, Koizumi F, Ono T, Nouso K, Jungbluth A, Chen YT, Old LJ, Shiratori Y, Nakayama E (2005) Quantitative real-time RT-PCR analysis of NY-ESO-1 and LAGE-1a mRNA expression in normal tissues and tumors, and correlation of the protein expression with the mRNA copy number. Int J Oncol 26: 57–63

    PubMed  CAS  Google Scholar 

  • Zambon A, Mandruzzato S, Parenti A, Macino B, Dalerba P, Ruol A, Merigliano S, Zaninotto G, Zanovello P (2001) MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer 91: 1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Tanaka F, Fujie T, Tahara K, Mori M, Takesako K, Sette A, Celis E, Akiyoshi T (1997) Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 57: 4465–4468

    PubMed  CAS  Google Scholar 

  • Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LJ, Knuth A (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97: 12198–12203

    Article  PubMed  CAS  Google Scholar 

  • Mimura K, Kono K, Hanawa M, Mitsui F, Sugai H, Miyagawa N, Ooi A, Fujii H (2005) Frequencies of HER-2/neu expression and gene amplification in patients with oesophageal squamous cell carcinoma. Br J Cancer 92: 1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Hanawa M, Suzuki S, Dobashi Y, Yamane T, Kono K, Enomoto N, Ooi A (2006) EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer 118: 1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS (2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22: 1615–1623

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell F, Fowlkes BJ (1990) Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science 248: 1342–1348

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182: 18–32

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, Nussenzweig M (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 987: 15–25

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21: 685–711

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478

    Article  PubMed  CAS  Google Scholar 

  • Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel RM (1999) Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 96: 2233–2238

    Article  PubMed  CAS  Google Scholar 

  • Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, Somoza C (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366: 76–79

    Article  PubMed  CAS  Google Scholar 

  • Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11: 191–212

    PubMed  CAS  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16: 137–161

    Article  PubMed  CAS  Google Scholar 

  • Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23: 263–272

    Article  PubMed  CAS  Google Scholar 

  • Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159: 4772–4780

    PubMed  CAS  Google Scholar 

  • Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y (2004) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53: 543–550

    Article  PubMed  CAS  Google Scholar 

  • Jonuleit H, Schmitt E, Steinbrink K, Enk AH (2001) Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 22: 394–400

    Article  PubMed  CAS  Google Scholar 

  • Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9: 4404–4408

    PubMed  Google Scholar 

  • Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Fujii H (2006) CD4(+)CD25 high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 55: 1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Valzasina B, Piconese S, Guiducci C, Colombo MP (2006) Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25− lymphocytes is thymus and proliferation independent. Cancer Res 66: 4488–4495

    Article  PubMed  CAS  Google Scholar 

  • Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332

    Article  PubMed  CAS  Google Scholar 

  • O'Rourke MG, Johnson M, Lanagan C, See J, Yang J, Bell JR, Slater GJ, Kerr BM, Crowe B, Purdie DM, Elliott SL, Ellem KA, Schmidt CW (2003) Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 52: 387–395

    PubMed  Google Scholar 

  • Stift A, Sachet M, Yagubian R, Bittermann C, Dubsky P, Brostjan C, Pfragner R, Niederle B, Jakesz R, Gnant M, Friedl J (2004) Dendritic cell vaccination in medullary thyroid carcinoma. Clin Cancer Res 10: 2944–2953

    Article  PubMed  CAS  Google Scholar 

  • Stift A, Friedl J, Dubsky P, Bachleitner-Hofmann T, Schueller G, Zontsich T, Benkoe T, Radelbauer K, Brostjan C, Jakesz R, Gnant M (2003) Dendritic cell-based vaccination in solid cancer. J Clin Oncol 21: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Friedl J, Stift A, Paolini P, Roth E, Steger GG, Mader R, Jakesz R, Gnant MF (2000) Tumor antigen pulsed dendritic cells enhance the cytolytic activity of tumor infiltrating lymphocytes in human hepatocellular cancer. Cancer Biother Radiopharm 15: 477–486

    PubMed  CAS  Google Scholar 

  • Bachleitner-Hofmann T, Strohschneider M, Krieger P, Sachet M, Dubsky P, Hayden H, Schoppmann SF, Pfragner R, Gnant M, Friedl J, Stift A (2006) Heat shock treatment of tumor lysate-pulsed dendritic cells enhances their capacity to elicit antitumor T cell responses against medullary thyroid carcinoma. J Clin Endocrinol Metab 91: 4571–4577

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182: 389–400

    Article  PubMed  CAS  Google Scholar 

  • Stingl G, Maurer D (1997) IgE-mediated allergen presentation via Fc epsilon RI on antigen-presenting cells. Int Arch Allergy Immunol 113: 24–29

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Ebner C, Reininger B, Petzelbauer P, Fiebiger E, Stingl G (1997) Mechanisms of Fc epsilon RI-IgE-facilitated allergen presentation by dendritic cells. Adv Exp Med Biol 417: 175–178

    PubMed  CAS  Google Scholar 

  • Brossart P, Bevan MJ (1997) Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90: 1594–1599

    PubMed  CAS  Google Scholar 

  • Hart DN, Schultze JL, Stewart AK (1999) Presentation of tumor antigens. Semin Hematol 36: 21–25

    PubMed  CAS  Google Scholar 

  • Basu S, Srivastava PK (1999) Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189: 797–802

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Harris ML, Menoret A, Srivastava PK (2000) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165: 2582–2587

    PubMed  CAS  Google Scholar 

  • Menoret A, Chandawarkar RY, Srivastava PK (2000) Natural autoantibodies against heat-shock proteins hsp70 and gp96: implications for immunotherapy using heat-shock proteins. Immunology 101: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20: 561–567

    Article  PubMed  CAS  Google Scholar 

  • Koch F, Heufler C, Kampgen E, Schneeweiss D, Bock G, Schuler G (1990) Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. J Exp Med 171: 159–171

    Article  PubMed  CAS  Google Scholar 

  • Wurtzen PA, Nissen MH, Claesson MH (2001) Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production. Scand J Immunol 53: 579–587

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17: 138–146

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Yamashita N, Matsuyama T (2002) Human peripheral blood monocyte-derived interleukin-10-induced semi-mature dendritic cells induce anergic CD4(+) and CD8(+) T cells via presentation of the internalized soluble antigen and cross-presentation of the phagocytosed necrotic cellular fragments. Cell Immunol 215: 186–194

    Article  PubMed  CAS  Google Scholar 

  • Magram J, Connaughton SE, Warrier RR, Carvajal DM, Wu CY, Ferrante J, Stewart C, Sarmiento U, Faherty DA, Gately MK (1996) IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 4: 471–481

    Article  PubMed  CAS  Google Scholar 

  • Cheever MA, Thompson DB, Klarnet JP, Greenberg PD (1986) Antigen-driven long term-cultured T cells proliferate in vivo, distribute widely, mediate specific tumor therapy, and persist long-term as functional memory T cells. J Exp Med 163: 1100–1112

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251–276

    Article  PubMed  CAS  Google Scholar 

  • Croft M, Carter L, Swain SL, Dutton RW (1994) Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med 180: 1715–1728

    Article  PubMed  CAS  Google Scholar 

  • Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, Gately MK, Wolf SF, Schreiber RD, Storkus WJ, et al (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 153: 1697–1706

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Taniguchi M, Street SE (2000) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165: 2665–2670

    PubMed  CAS  Google Scholar 

  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Merogi AJ, Marrogi AJ, Ramesh R, Robinson WR, Fermin CD, Freeman SM (1997) Tumor-host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 28: 321–331

    Article  PubMed  CAS  Google Scholar 

  • Yasunaga M, Tabira Y, Nakano K, Iida S, Ichimaru N, Nagamoto N, Sakaguchi T (2000) Accelerated growth signals and low tumor-infiltrating lymphocyte levels predict poor outcome in T4 esophageal squamous cell carcinoma. Ann Thorac Surg 70: 1634–1640

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28: 258–267

    Article  PubMed  CAS  Google Scholar 

  • Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99: 16168–16173

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28: 53–62

    Article  PubMed  Google Scholar 

  • Teague RM, Sather BD, Sacks JA, Huang MZ, Dossett ML, Morimoto J, Tan X, Sutton SE, Cooke MP, Ohlen C, Greenberg PD (2006) Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD (1999) Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol 162: 2227–2234

    PubMed  CAS  Google Scholar 

  • Knabel M, Franz TJ, Schiemann M, Wulf A, Villmow B, Schmidt B, Bernhard H, Wagner H, Busch DH (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8: 631–637

    Article  PubMed  CAS  Google Scholar 

  • Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, Haworth LR, Levy C, Kleiner D, Mavroukakis SA, Yellin M, Rosenberg SA (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12: 1005–1016

    Article  PubMed  Google Scholar 

  • Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194: 823–832

    Article  PubMed  CAS  Google Scholar 

  • van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190: 355–366

    Article  PubMed  CAS  Google Scholar 

  • Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100: 8372–8377

    Article  PubMed  CAS  Google Scholar 

  • Gibault L, Metges JP, Conan-Charlet V, Lozac'h P, Robaszkiewicz M, Bessaguet C, Lagarde N, Volant A (2005) Diffuse EGFR staining is associated with reduced overall survival in locally advanced oesophageal squamous cell cancer. Br J Cancer 93: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Janmaat ML, Gallegos-Ruiz MI, Rodriguez JA, Meijer GA, Vervenne WL, Richel DJ, Van Groeningen C, Giaccone G (2006) Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J Clin Oncol 24: 1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL (2004) Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 22: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Sutter AP, Hopfner M, Huether A, Maaser K, Scherubl H (2006) Targeting the epidermal growth factor receptor by erlotinib (Tarceva) for the treatment of esophageal cancer. Int J Cancer 118: 1814–1822

    Article  PubMed  CAS  Google Scholar 

  • Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Bourhis J, Rivera F, Mesia R, Awada A, Geoffrois L, Borel C, Humblet Y, Lopez-Pousa A, Hitt R, Vega Villegas ME, Duck L, Rosine D, Amellal N, Schueler A, Harstrick A (2006) Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 24: 2866–2872

    Article  PubMed  CAS  Google Scholar 

  • Vanhoefer U, Tewes M, Rojo F, Dirsch O, Schleucher N, Rosen O, Tillner J, Kovar A, Braun AH, Trarbach T, Seeber S, Harstrick A, Baselga J (2004) Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J Clin Oncol 22: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Safran H, DiPetrillo T, Nadeem A, Steinhoff M, Tantravahi U, Rathore R, Wanebo H, Hughes M, Maia C, Tsai JY, Pasquariello T, Pepperell JR, Cioffi W, Kennedy T, Reeder L, Ng T, Adrian A, Goldstein L, Chak B, Choy H (2004) Trastuzumab, paclitaxel, cisplatin, and radiation for adenocarcinoma of the esophagus: a phase I study. Cancer Invest 22: 670–677

    Article  PubMed  CAS  Google Scholar 

  • Mimura K, Kono K, Hanawa M, Kanzaki M, Nakao A, Ooi A, Fujii H (2005) Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clin Cancer Res 11: 4898–4904

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Takeda A, Nabeya Y, Okazumi SI, Matsubara H, Funami Y, Hayashi H, Gunji Y, Kobayashi S, Suzuki T, Ochiai T (2001) Clinical significance of serum vascular endothelial growth factor in esophageal squamous cell carcinoma. Cancer 92: 663–669

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Shimada Y, Uchida S, Maeda M, Kawabe A, Mori A, Itami A, Kano M, Watanabe G, Imamura M (2000) TGF-alpha as well as VEGF, PD-ECGF and bFGF contribute to angiogenesis of esophageal squamous cell carcinoma. Int J Oncol 17: 453–460

    PubMed  CAS  Google Scholar 

  • Kimura S, Kitadai Y, Tanaka S, Kuwai T, Hihara J, Yoshida K, Toge T, Chayama K (2004) Expression of hypoxia-inducible factor (HIF)-1alpha is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer 40: 1904–1912

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Zhu AX, Blaszkowsky LS, Ryan DP, Clark JW, Muzikansky A, Horgan K, Sheehan S, Hale KE, Enzinger PC, Bhargava P, Stuart K (2006) Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 24: 1898–1903

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Friedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedl, J., Riss, S. & Stift, A. Is immunotherapy a reasonable approach for the treatment of esophageal cancer?. Eur Surg 39, 158–166 (2007). https://doi.org/10.1007/s10353-007-0334-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-007-0334-4

Schlüsselwörter

Keywords

Navigation