Skip to main content

Advertisement

Log in

In Vitro Model for Liposome-Mediated Adenomatous Polyposis Coli Gene Transfer in a Duodenal Model

  • Original Contribution
  • Published:
Diseases of the Colon & Rectum

PURPOSE: Duodenal adenomas arise in more than 90 percent of patients with familial adenomatous polyposis (FAP). Management of severe duodenal disease remains difficult and controversial. This study investigates transfer of functional wild-type adenomatous polyposis coli (APC) gene under conditions of varying pH and bile concentrations into a somatic duodenal cancer cell line (HUTU-80) as a prelude to in vivo gene therapy in the management of severe duodenal disease. METHODS: In vitro transfection of human APC gene was performed on a human duodenal adenocarcinoma cell line (HUTU-80) by use of a liposomal vector. Different concentrations (5 percent and 10 percent) of human bile and varying pH (6 percent and 8 percent) were used during APC gene transfer to assess their effects on transfection efficiency. The effect of bile on the proliferation of HUTU-80 cells was evaluated by means of a colorimetric chemosensitivity assay with sulforhodamine B (SRB). The duration of APC transgene expression was analyzed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Exogenous APC transgene was expressed in HUTU-80 cell line for 6 days after transfection. Differing pH did not affect APC gene transfer into the duodenal cell line with similar transgene expression to controls, but APC transfection efficiency was reduced semiquantitatively in the presence of bile. Coculturing with human bile (5 percent and 10 percent) did not affect the proliferation of HUTU-80. CONCLUSION: This study demonstrates transfer of APC gene into a duodenal epithelial cell line with prolonged transgene expression. Liposome-mediated APC gene transfer to the duodenum is feasible even in the presence of bile and varying pH, raising the potential of future gene therapy for this extremely difficult to treat condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

REFERENCES

  1. Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589-600

    Google Scholar 

  2. Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661-5

    Google Scholar 

  3. Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665-9

    Google Scholar 

  4. Spigelman AD, Williams CB, Talbot IC, Domizio P, Phillips RK. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. Lancet 1989;2:783-5

    Google Scholar 

  5. Wallace MH, Phillips RK. Upper gastrointestinal disease in patients with familial adenomatous polyposis. Br J Surg 1998;85:742-50

    Google Scholar 

  6. Vasen HF, Bulow S, Myrhoj T, et al. Decision analysis in the management of duodenal adenomatosis in familial adenomatous polyposis. Gut 1997;40:716-9

    Google Scholar 

  7. Nugent KP, Spigelman AD, Phillips RK. Life expectancy after colectomy and ileorectal anastomosis for familial adenomatous polyposis. Dis Colon Rectum 1993;36:1059-62

    Google Scholar 

  8. Arvanitis ML, Jagelman DG, Fazio VW, Lavery IC, McGannon E. Mortality in patients with familial adenomatous polyposis. Dis Colon Rectum 1990;33:639-42

    Google Scholar 

  9. Belchetz LA, Berk T, Bapat BV, Cohen Z, Gallinger S. Changing causes of mortality in patients with familial adenomatous polyposis. Dis Colon Rectum 1996;39:384-7

    Google Scholar 

  10. Tsiotos GG, Sarr MG. Pancreas-preserving total duodenectomy. Dig Surg 1998;15:398-403

    Google Scholar 

  11. Yeo CJ. Pylorus-preserving pancreaticoduodenectomy. Surg Oncol Clin North Am 1998;7:143-56

    Google Scholar 

  12. Penna C, Phillips RK, Tiret E, Spigelman AD. Surgical polypectomy of duodenal adenomas in familial adenomatous polyposis: experience of two European centres. Br J Surg 1993;80:1027-9

    Google Scholar 

  13. Norton ID, Geller A, Petersen BT, Sorbi D, Gostout CJ. Endoscopic surveillance and ablative therapy for periampullary adenomas. Am J Gastroenterol 2001;96:101-6

    Google Scholar 

  14. Alarcon FJ, Burke CA, Church JM, van Stolk RU. Familial adenomatous polyposis: efficacy of endoscopic and surgical treatment for advanced duodenal adenomas. Dis Colon Rectum 1999;42:1533-6

    Google Scholar 

  15. Spigelman AD, Talbot IC, Penna C, et al. Evidence for adenoma-carcinoma sequence in the duodenum of patients with familial adenomatous polyposis. The Leeds Castle Polyposis Group (Upper Gastrointestinal Committee). J Clin Pathol 1994;47:709-10

    Google Scholar 

  16. Stolte M, Pscherer C. Adenoma-carcinoma sequence in the papilla of Vater. Scand J Gastroenterol 1996;31:376-82

    Google Scholar 

  17. Fearnhead NS, Britton MP, Bodmer WF. The abc of apc. Hum Mol Genet 2001;10:721-33

    Google Scholar 

  18. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers [news; comment]. Nature 1997;386:761-3

    Google Scholar 

  19. Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A 1996;93:7950-4

    Google Scholar 

  20. Hsi LC, Angerman-Stewart J, Eling TE. Introduction of full-length APC modulates cyclooxygenase-2 expression in HT-29 human colorectal carcinoma cells at the translational level. Carcinogenesis 1999;20:2045-9

    Google Scholar 

  21. Arenas RB, Fichera A, Mok P, Blanco MC, Michelassi F. Introduction of human adenomatous polyposis coli gene into Min mice via cationic liposomes. Surgery 1996;120:712-7; discussion 717-8

    Google Scholar 

  22. Hargest R, Eldin A, Williamson R. Gene therapy for familial adenomatous polyposis. Prolonged expression of the adenomatous polyposis coli gene after lipofection into mouse colon in vivo. Adv Exp Med Biol 1998;451:385-91

    Google Scholar 

  23. Trias X, Strebel HM, Paumgartner G, Wiesmann UN. Effects of bile and bile acids on cultured human fibroblasts. Eur J Clin Invest 1977;7:189-94

    Google Scholar 

  24. Ramaesh K, Billson FA, Madigan MC. Effect of bile acids on fibroblast proliferation and viability. Eye 1998;12:717-22

    Google Scholar 

  25. Mortimer I, Tam P, MacLachlan I, Graham RW, Saravolac EG, Joshi PB. Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther 1999;6:403-11

    Google Scholar 

  26. Westbrook CA, Chmura SJ, Arenas RB, Kim SY, Otto G. Human APC gene expression in rodent colonic epithelium in vivo using liposomal gene delivery. Hum Mol Genet 1994;3:2005-10

    Google Scholar 

  27. Raff T, van der Giet M, Endemann D, Wiederholt T, Paul M. Design and testing of beta-actin primers for RT-PCR that do not co- amplify processed pseudogenes. Biotechniques 1997;23:456-60

    Google Scholar 

  28. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990;82:1107-12

    Google Scholar 

  29. Kubota T, Takahara T, Nagata M, et al. Colorimetric chemosensitivity testing using sulforhodamine B. J Surg Oncol 1993;52:83-8

    Google Scholar 

  30. Jenks S. Gene therapy death-everyone has to share in the guilt [news]. J Natl Cancer Inst 2000;92:98-100

    Google Scholar 

  31. Barenholz Y. Liposome application: problems and prospects. Current 2001;6:66-77

    Google Scholar 

  32. Mahato RI, Smith LC, Rolland A. Pharmaceutical perspectives of nonviral gene therapy. Adv Genet 1999;41:95-156

    Google Scholar 

  33. Simoes S, Pires P, Duzgunes N, Pedroso de Lima MC. Cationic liposomes as gene transfer vectors: barrier to successful application in gene therapy. Curr Opin Mol Ther 1999;1:147-57

    Google Scholar 

  34. Bagnis C, Chabannon C, Mannoni P. Beta-galactosidase marker genes to tag and track human hematopoietic cells. Cancer Gene Ther 1999;6:3-13

    Google Scholar 

  35. Niedzinski EJ, Bennett MJ, Olson DC, Nantz MH. Gastroprotection of DNA with a synthetic cholic acid analog. Lipids 2000;35:721-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin K. S. Phillips F.R.C.S., M.S..

About this article

Cite this article

Lee, J., Hargest, R., Wasan, H. et al. In Vitro Model for Liposome-Mediated Adenomatous Polyposis Coli Gene Transfer in a Duodenal Model. Dis Colon Rect 47, 219–226 (2004). https://doi.org/10.1007/s10350-003-0036-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10350-003-0036-3

Navigation