Palaeozoic stromatoporoids and chaetetids analysed using electron backscatter diffraction (EBSD); implications for original mineralogy and microstructure

Abstract

Palaeozoic hypercalcified sponges were ubiquitous Ordovician—Devonian reef builders but, despite their rich fossil record, their original skeletal mineralogy and microstructure remain poorly understood. This study provides the first application of electron backscatter diffraction (EBSD) to analyse skeletal structure of Silurian and Devonian stromatoporoids. The two Silurian and two Devonian stromatoporoid taxa selected are typical of stromatoporoids in showing poor preservation. A reference sample of an exceptionally well-preserved hypercalcified chaetetid sponge from the Carboniferous Buckhorn Asphalt Quarry (a fossil lagerstätte renowned for its preservation of skeletal microstructures) contains evidence that its skeleton comprised distinct bundles of single-crystal fibres, similar to modern hypercalcifying sponges. Similar bundles of crystal fibres are proposed here as the original microstructure of stromatoporoids, and acted as precursors to the coarse fibrous calcitic overprinting recrystallisation that is orientated normal to the growth layers, seen in all stromatoporoids viewed in cross-polarised light. The studied stromatoporoids show pronounced microporosity and micro-dolomite inclusions which are circumstantial evidence of an original composition of high-Mg calcite (HMC). We propose that the evidence of fibrous structures might be linked to inclusions of hydrated amorphous calcium carbonate (ACC·H2O) in the skeleton at the time of early diagenesis, as occurs in modern calcified sponges. The possible HMC skeletal composition of Palaeozoic stromatoporoids supports earlier views that the mineral composition of hypercalcifying reef builders is linked to Phanerozoic oscillations in the ratio of Mg:Ca, expressed as aragonite-calcite seas; stromatoporoids thrived in times of calcite-seas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

Data transparency.

References

  1. Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8:222–226. https://doi.org/10.1002/adma.19960080307

    Article  Google Scholar 

  2. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Powers CM, Sessa CA, Simpson C, Tomašových A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  Google Scholar 

  3. Balthasar U, Cusack M (2015) Aragonite-calcite seas-quantifying the gray area. Geology 43:99–102. https://doi.org/10.1130/G36293.1

    Article  Google Scholar 

  4. Balthasar U, Cusack M, Faryma L, Chung P, Holmer LE, Jin J, Percival IG, Popov LE (2011) Relic aragonite from Ordovician-Silurian brachiopods: implications for the evolution of calcification. Geology 39:967–970. https://doi.org/10.1130/G32269.1

    Article  Google Scholar 

  5. Cusack M (2016) Biomineral electron backscatter diffraction for palaeontology. Palaeontology 59:171–179. https://doi.org/10.1111/pala.12222

    Article  Google Scholar 

  6. Cusack M, England J, Dalbeck P, Tudhope AW, Fallick AE (2008) Electron backscatter diffraction (EBSD) as a tool for detection of coral diagenesis. Coral Reefs 27:905–911. https://doi.org/10.1007/s00338-008-0414-3

    Article  Google Scholar 

  7. Da Silva AC, Kershaw S, Boulvain F (2011a) Stromatoporoid palaeoecology in the Frasnian (Upper Devonian) Belgian platform, and its applications in interpretation of carbonate platform environments. Palaeontology 54:883–905. https://doi.org/10.1111/j.1475-4983.2011.01037.x

    Article  Google Scholar 

  8. Da Silva AC, Kershaw S, Boulvain F (2011b) Sedimentology and stromatoporoid palaeoecology of Frasnian (Upper Devonian) carbonate mounds in southern Belgium. Lethaia 44:255–274. https://doi.org/10.1111/j.1502-3931.2010.00240.x

    Article  Google Scholar 

  9. Da Silva AC, Kershaw S, Boulvain F, Hubert BLM, Mistiaen B, Reynolds A, Reitner J (2014) Indigenous demosponge spicules in a Late Devonian stromatoporoid basal skeleton from the Frasnian of Belgium. Lethaia 47:365–375. https://doi.org/10.1111/let.12064

    Article  Google Scholar 

  10. Demicco RV, Lowenstein TK, Hardie LA, Spencer RJ (2005) Model of seawater composition for the Phanerozoic. Geology 33:877–880. https://doi.org/10.1130/G21945.1

    Article  Google Scholar 

  11. Dickson JAD (1991) Carbonate mineralogy and chemistry. pp. 284–313, In: Tucker ME and Wright VP (eds): Carbonate Sedimentology. 498 pages, Blackwell Science Ltd. Oxford. ISBN 978-0-632-01472-9

  12. Dickson JAD (2001a) Transformation of echinoid Mg calcite skeletons by heating. Geochim Cosmochim Acta 65:443–454. https://doi.org/10.1016/S0016-7037(00)00547-0

    Article  Google Scholar 

  13. Dickson JAD (2001b) Diagenesis and crystal caskets: echinoderm Mg calcite transformation, Dry Canyon, New Mexico, USA. J Sediment Res 71:764–777. https://doi.org/10.1306/2DC40966-0E47-11D7-8643000102C1865D

    Article  Google Scholar 

  14. Dickson JAD (2004) Echinoderm skeletal preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. J Sediment Res 74:355–365

    Article  Google Scholar 

  15. Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov V, Botting JP, Ilan M, Ereskovsky AV, Muricy G, Worch H, Mensch A, Born R, Springer A, Kummer K, Vyalikh DV, Molodtsov SL, Kurek D, Kammer M, Paasch S, Brunner E (2010) Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater 22:1462–1471. https://doi.org/10.1021/cm9026607

    Article  Google Scholar 

  16. Ehrlich H, Brunner E, Simon P, Bazhenov VV, Botting JP, Tabachnick KR, Springer A, Kummer K, Vyalikh DV, Molodtsov SL, Kurek D, Kammer M, Born R, Kovalev A, Gorb SN, Koutsoukos PG, Summers A (2011) Calcite reinforced silica-silica joints in the biocomposite skeleton of deep-sea glass sponges. Adv Func Mater 21:3473–3481. https://doi.org/10.1002/adfm.201100749

    Article  Google Scholar 

  17. Eichenseer K, Balthasar U, Smart C, Stander J, Haaga K, Kiessling W (2019) Jurassic shift from abiotic to biotic control on marine ecological success. Nat Geosci 12:638–642

    Article  Google Scholar 

  18. Gaffey SJ (1988) Water in skeletal carbonates. J Sediment Petrol 58:397–414

    Google Scholar 

  19. Gaffey S (1991) Skeletal carbonate diversity: implications for marine diagenesis. In: Bain RJ (Ed.). Proceedings of the Fifth Symposium on the Geology of the Bahamas. Bahamian Field Station, San Salvador, Bahamas. ISBN 0-935909-37-0

  20. Gaffey SJ (1995) H2O and OH in echinoid calcite—a spectroscopic study. Am Miner 80:947–959

    Article  Google Scholar 

  21. Garate L, Sureda J, Agell G, Uriz MJ (2017) Endosymbiotic calcifying bacteria across sponge species and oceans. Sci Rep 7:43674. https://doi.org/10.1038/srep43674

    Article  Google Scholar 

  22. Germer J, Mann K, Wörheide G, Jackson DJ (2015) The skeleton forming proteome of an early branching metazoan: a molecular survey of the biomineralization components employed by the coralline sponge Vaceletia sp. PLoS ONE 10(11):e0140100. https://doi.org/10.1371/journal.pone.0140100

    Article  Google Scholar 

  23. Gilis M, Grauby O, Willenz P, Dubois P, Legras L, Heresanu V, Baronnet A (2011) Multi-scale mineralogical characterization of the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea). J Struct Biol 176:315–329. https://doi.org/10.1016/j.jsb.2011.08.008

    Article  Google Scholar 

  24. Gilis M, Baronnet A, Dubois Ph, Legras L, Grauby O, Willenz P (2012) Biologically controlled mineralization in the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea). J Struct Biol 178:279–289. https://doi.org/10.1016/j.jsb.2012.04.004

    Article  Google Scholar 

  25. Gilis M, Grauby O, Willenz P, Dubois P, Heresanu V, Baronnet A (2013) Biomineralization in living hypercalcified demosponges: toward a shared mechanism? J Struct Biol 183:441–454. https://doi.org/10.1016/j.jsb.2013.05.018

    Article  Google Scholar 

  26. Gong YUT, Killiana CE, Olsona IC, Appathuraic NP, Amasinoa AL, Martin MC, Holt LJ, Wilt FH, Gilbert PUPA (2012) Phase transitions in biogenic amorphous calcium carbonate. PNAS 109:6088–6093. https://doi.org/10.1073/pnas.1118085109

    Article  Google Scholar 

  27. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283

    Article  Google Scholar 

  28. Jackson DJ, Thiel V, Wörheide G (2010) An evolutionary fast-track to biocalcification. Geobiology 8:191–196. https://doi.org/10.1111/j.1472-4669.2010.00236.x

    Article  Google Scholar 

  29. Jackson DJ, Macis L, Reitner J, Wörheide G (2011) A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol Biol. https://doi.org/10.1186/1471-2148-11-238

    Article  Google Scholar 

  30. Kershaw S (2013) Palaeozoic stromatoporoid futures: a discussion of their taxonomy, mineralogy and applications in palaeoecology and palaeoenvironmental analysis. J Palaeogeogr 2:163–182. https://doi.org/10.3724/SP.J.1261.2013.00024

    Article  Google Scholar 

  31. Kershaw S, Sendino C (2020) Labechia carbonaria Smith 1932 in the Early Carboniferous of England; affinity, palaeogeographic position and implications for the geological history of stromatoporoid-type sponges. J Palaeogeogr. https://doi.org/10.1186/s42501-020-00077-7

    Article  Google Scholar 

  32. Kiessling W, Aberhan M, Villier L (2008) Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nat Geosci 1:527–530

    Article  Google Scholar 

  33. Mallamo MP, Stearn CW (1991) Skeletal mineralogy of Ordovician stromatoporoids: new geochemical evidence for an aragonite skeleton. Geol Soc Am, Abstracts Programs 23:164

    Google Scholar 

  34. Manuel M, Borchiellini C, Alivon E, Boury-Esnault N (2004) Molecular phylogeny of calcareous sponges using 18S rRNA and 28S rRNA sequences. Bolletino Musei Degli Istituti Biologici Universita Genova 68:449–461

    Google Scholar 

  35. Marin F, Le Roy N, Marie B, Ramos-Silva P, Bundeleva I, Guichard N, Immel F (2014) Metazoan calcium carbonate biomineralizations: macroevolutionary trends—challenges for the coming decade. Bull Soc Geol Fr 185:217–232

    Article  Google Scholar 

  36. Mori K (1969) Stromatoporoids from the Silurian of Gotland I. Stockholm Contrib Geol 19:1–100

    Google Scholar 

  37. Morrow C, Cárdenas P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Front Zool. https://doi.org/10.1186/s12983-015-0099-8

    Article  Google Scholar 

  38. Morse JW, Wang Q, Tsio MY (1997) Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25:85–87

    Article  Google Scholar 

  39. Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  Google Scholar 

  40. Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164. https://doi.org/10.1126/science.1102289

    Article  Google Scholar 

  41. Rush PF, Chafetz HS (1991) Skeletal mineralogy of Devonian stromatoporoids. J Sediment Petrol 61:364–369

    Google Scholar 

  42. Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  Google Scholar 

  43. Sarashina I, Kunitomo Y, Iijima M, Chiba S, Endo K (2008) Preservation of the shell matrix protein dermatopontin in 1500 year old land snail fossils from the Bonin islands. Org Geochem 39:1742–1746. https://doi.org/10.1016/j.orggeochem.2008.08.004

    Article  Google Scholar 

  44. Semeniuk V (1971) Subaerial leaching in the limestones of the Bowan Park Group (Ordovician) of central western New South Wales. J Sediment Petrol 41:939–950

    Google Scholar 

  45. Sethmann I, Wörheide G (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39:209–228. https://doi.org/10.1016/j.micron.2007.01.006

    Article  Google Scholar 

  46. Seuss B, Nützel A, Mapes RH, Yancey TE (2009) Facies and fauna of the Pennsylvanian Buckhorn Asphalt Quarry deposit: a review and new data on an important Palaeozoic fossil Lagerstatte with aragonite preservation. Facies 55:609–645. https://doi.org/10.1007/s10347-009-0181-9

    Article  Google Scholar 

  47. Seuss B, Senowbari-Daryan B, Nützel A, Dittrich S, Neubauer J (2014) A chaetetid sponge assemblage from the Desmoinesian (Upper Moscovian) Buckhorn Asphalt Quarry Lagerstätte in Oklahoma, USA. Riv Ital Paleontol Stratigr 120:3–26

    Google Scholar 

  48. Smith AM, Berman J, Key MM Jr, Winter DJ (2013) Not all sponges will thrive in a high-CO2 ocean: review of the mineralogy of calcifying sponges. Palaeogeogr Palaeoclimatol Palaeoecol 392:463–472. https://doi.org/10.1016/j.palaeo.2013.10.004

    Article  Google Scholar 

  49. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  50. Stearn CW (2015a) Functional morphology of the Paleozoic stromatoporoid skeleton. pp 551–573 In: Selden PA (ed.) 2015. Treatise on Invertebrate Paleontology. Part E (Revised), Porifera, vol. 4–5. The University of Kansas Paleontological Institute. Lawrence, Kansas. liii + 1223 p., 665 fig., 42 tables

  51. Stearn CW (2015b) Microstructure and mineralogy of Paleozoic Stromatoporoidea. pp 521–542 In: Selden PA, (ed.) 2015. Treatise on Invertebrate Paleontology. Part E (Revised), Porifera, vol. 4–5. The University of Kansas Paleontological Institute. Lawrence, Kansas. liii + 1223 p., 665 fig., 42 tables

  52. Stearn CW, Mah AJ (1987) Skeletal microstructure of Paleozoic stromatoporoids and its mineralogical implications. Palaios 2:76–84

    Article  Google Scholar 

  53. Uriz M-J (2006) Mineral skeletogenesis in sponges. Can J Zool 84:322–356

    Article  Google Scholar 

  54. Veizer J, Prokoph A (2015) Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci Rev 146:92–104. https://doi.org/10.1016/j.earscirev.2015.03.008

    Article  Google Scholar 

  55. Voigt O, Wülfing E, Wörheide G (2012) Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera Class Calcarea). PLoS ONE. https://doi.org/10.1371/journal.pone.0033417

    Article  Google Scholar 

  56. Webby BD (2015) Glossary of terms applied to the hypercalcified Porifera. Pp 397–416 In: Selden PA (ed.) 2015. Treatise on Invertebrate Paleontology. Part E (Revised), Porifera, vol. 4–5. The University of Kansas Paleontological Institute. Lawrence, Kansas. liii + 1223 p., 665 fig., 42 tables

  57. West RR (2012) Evolution of the hypercalcified chaetetid-type Porifera (Demospongiae). Treatise Online 35:1–26

    Google Scholar 

  58. Wood R (1987) Biology and revised systematics of some late Mesozoic stromatoporoids. Spec Pap Palaeontol 37:1–89

    Google Scholar 

  59. Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific—micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38:1–88

    Article  Google Scholar 

  60. Yoo CM, Lee YI (1993) Original mineralogy of stromatoporoids. Carbonates Evaporites 8:224–229

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the use of the facilities of the Imaging Spectroscopy & Analysis Centre (ISAAC), School of Geographical & Earth Sciences, University of Glasgow. We also thank Mrs Heltzel for access to her private property to access the Buckhorn Asphalt Quarry. Ronald West (Kansas) facilitated collection and processing of sample illustrated in Fig. 3a. We thank Juwan Jeon (Nanjing) and Chelsea Pederson (Bochum) for careful reviews of the manuscript.

Funding

BS was supported by funding from the DFG (NU 96/10-1, 2 und SE 2283/2-1). MC gratefully acknowledges support of the Natural Environment Research Council (NE/P011063/1). ACDS Acknowledges the National Science Foundation program (FNRS) for financial support (T.0051.19). KE was supported by a doctoral studentship by the University of Plymouth.

Author information

Affiliations

Authors

Contributions

UB, MC, KE and PC did the analyses; UB, SK, ACD, MC and BS wrote the paper.

Corresponding author

Correspondence to Stephen Kershaw.

Ethics declarations

Conflict of interest

There are no conflicts or competing interests associated with this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balthasar, U., Kershaw, S., Da Silva, AC. et al. Palaeozoic stromatoporoids and chaetetids analysed using electron backscatter diffraction (EBSD); implications for original mineralogy and microstructure. Facies 67, 8 (2021). https://doi.org/10.1007/s10347-020-00618-5

Download citation

Keywords

  • Stromatoporoid
  • Chaetetid
  • Sponges
  • Micro-dolomite
  • High-magnesium calcite
  • Aragonite-calcite seas